
Integrating Container Services with Pluggable
System Extensions

Andreas Leicher1, Alexander Bilke1, Felix Bübl3, E. Ulrich Kriegel2

1 Technische Universität Berlin, Germany
Computergestützte InformationsSysteme (CIS)

{aleicher|bilke}@cs.tu-berlin.de
2 Fraunhofer Institute for

Software and Systems Engineering (ISST), Germany
Ulrich.Kriegel@isst.fhg.de

3 Imphar AG, Berlin, Germany
felix.buebl@imphar.com

Abstract. Common middleware platforms support software components
by providing a number of standard container services. Adding new con-
tainer services can adapt a system to changed requirements without mod-
ifying its constituent components. Custom-made container services can
intercept communication calls between system’s components and enforce
new or changed requirements. Hence, legacy or off-the-shelf components
can be adapted to comply with requirements that are not taken into
consideration by the initial system design.
In a global market, companies must be able to quickly adapt their soft-
ware systems to requirement changes. However, not all middleware plat-
forms allow to integrate additional container services, yet. This paper
describes a framework that enables developers to dynamically integrate
additional container services into existing systems and to configure them
at runtime. Moreover, the framework allows for conditional execution
of these services – they can adapt to the system’s state or its current
context.

1 Introduction

Software systems are inherently complex and, in many cases, long-lived. To in-
crease understandability and maintainability, different aspects of a system have
to be separated during all levels of system development. The corresponding ‘sep-
aration of concerns’ problem has been addressed by the research community in
recent years, resulting in the development of technologies that facilitate separa-
tion of concerns during implementation, e.g. aspect-oriented programming [14]
or composition filters [3]. Unfortunately, these technologies require access to the
source code or are built on special infrastructures.
In object and component-based middleware, separation of concerns can be achieved
by transparently adding services into the middleware without modifying the sys-
tem’s or application’s components. Service integration can be realized by two



similar approaches: proxies and interceptors. Each approach allows for execut-
ing services if a kind of trigger (e.g. a communication call event) fires. However,
interceptors are in some respect more general than proxies as they allow adding
services for arbitrary triggers, whereas proxies are focused on distributed com-
munication.
Interceptor-based techniques define the technical ability to add services transpar-
ently into middleware. However, complex problems arise when multiple services
should be integrated at the same time: Which service should gain precedence
and therefore be executed first? Are the preconditions of a service execution
altered if other services are executed first? Are service execution chains possible
(services triggering each other)?
The purpose of this paper is to enrich interceptor and proxy based approaches
with additional aspects dealing with complex service order and conditional ser-
vice execution:

Complex execution order. Up to now, distinct services can only be executed
using simple predefined strategies. Mainly a linear or sequential service or-
dering and execution is applied. However, so called feature interaction [5]
between services require non-linear execution, because services can have side
effects according to the component’s states or to their context. A non-linear
execution order can arrange several services within one communication call.
Consequently, a flexible hierarchy of services is needed.

Conditional execution. Sometimes business logic requires conditional execu-
tion of services. With regard to service reuse, it is an advantage to separate
services and their conditional execution logic: First, services become inde-
pendent of changes. Second, system dependent properties can be computed
by the conditional logic part. Thus, services become independent of the mid-
dleware. Third, in conjunction with service ordering, it should be possible
to optimize service execution.

Dynamic Configuration. If proxies are used, the additional functionality is
often hard-coded into the intercepting code at development time. Thus, it is
not possible to reconfigure and exchange these functionalities without stop-
ping and restarting the system. It should be possible to modify a running
system with a dynamic configuration mechanism, to adapt it to new or mod-
ified requirements like dynamically changing debugging code.

The structure of this paper is outlined in the following. Section 2 describes the
terms proxy and interceptor as a means to intercept method calls and discusses
implementation approaches. Plug-ins and the proxy manager, which are needed
for dynamic integration of new functionality, are introduced in section 3. Section
4 deals with the feature interaction problem that arises when concerns have to
be combined. The use of conditional expressions is described in section 5. The
resulting consequences for practical use are discussed in section 6 on the example
of the EJBComplex framework, developed to facilitate dynamic integration and
combination of new container services into the EJB platform. The configuration
of the framework is explained in section 7, followed by related work in section 8
and the conclusion in section 9.

2



2 Technical Background and Underlying Concepts

There are two ways to add services to applications running on middleware sys-
tems. First, a system level mechanism can be used, which requires the modifi-
cation of the middleware itself. Second, an application level mechanism can be
used, which can be implemented without affecting the middleware implementa-
tion
The interceptor pattern describes a system-level integration. An interceptor is
defined as a concept to ‘transparently integrate services into a framework, e.g.
middleware’ [10]. The application of this concept on system level requires the
modification of internal functionalities of middleware which means that the mid-
dleware’s source code has to be modified. At least, the interception call has to
be integrated into the middleware code. The advantage of this solution is a com-
pletely transparent integration of services that does not suffer from problems
related to solutions on application level. However, the necessity to manipulate
the source code and the resulting dependency on a certain product is a serious
disadvantage.
There exist a number of terms describing the interceptor concept. In some mid-
dleware products interceptors are known as callback functions. Callback func-
tions modify standard behavior and simplify integration approaches: e.g. , the
JBoss Server [20] supports a callback interface to intercept method calls to En-
terprise JavaBeans. The BEA WebLogic Server [2] provides a callback interface
in order to specify customized load balancing. Microsoft offers integration tech-
niques, so-called hooks, which easily and transparently allow addition of inter-
ception code into existing software [13,17]. CORBA middleware explicitly defines
interceptors as a standard extension mechanism.
However, the EJB middleware specification has no such mechanism. Thus, it is
necessary to use an application-level concept, such as a proxy. A proxy is charac-
terized by both an identical interface and a definite reference to the encapsulated
object. Gamma et al. [11] defines a proxy as follows: ‘A proxy provides a surro-
gate or placeholder for another object to control access to it.’ Since a proxy is
called instead of a remote server object, it can be used to prepare a dedicated
runtime environment for the remote server object and call it afterwards. On
principle, that is how modern application servers work.
At application level, there are some approaches to apply the proxy pattern,
represented in figure 1. The standard approach is shown as variant one. It is
based on a proxy component, which is transparently placed between the service
provider and the client component. The advantage of this approach is that appli-
cation level components do not have to be modified. However, compared to the
same principle on system level, control is limited. For instance, the self-problem
(disclosure of the component’s identity) cannot be fully prevented. The Server
component could return a self-reference to the Client and, therefore, enable
direct communication bypassing the proxy class. Another disadvantage arises
because the specification of the middleware allows only restricted access to sys-
tem properties. For instance, in an EJB environment the caller’s identity can not
be determined. Variants two and three can be used to merge the proxy function-

3



ality and the component functionality (Server) into a single new component,
which prevents the self-problem. The second variant shows the inheritance of the
application level component. The original component is specialized and replaced
by a new component. The third variant shows a aggregation approach. The orig-
inal component is encapsulated into a new component that also includes the
interception functionality. These variants require the modification of the system
because components have to be replaced.
In general, mechanisms to allow service integration are well understood. How-
ever, the mechanisms deal not well with problems arising if multiple services
are integrated, such as service ordering, conditional execution, and dynamic ser-
vice modification. This paper suggests structures and modeling solutions dealing
with these problems. These solutions are applicable with both system-level and
application level integration.

2.1 Extension Services

It is of great importance to carefully consider what kind of functionality will be
integrated into a system’s environment. Since components are the loci of com-
putation, it should be forbidden to alter a system’s application logic outside of
them. Present-day middleware platforms provide no direct access or limited ac-
cess to their communication mechanism’s implementations. However, there are
non-functional services, which do not influence a system’s computation, for ex-
ample the installation of debug functionality or constraint monitoring at runtime
(see section 7).
In the following, we use the term extension service to describe services that
do not change a system’s computation in any way, but provide supplemental
nonfunctional extensions4. Furthermore, we define a plug-in as a technical real-
ization of an extension service. A plug-in defines a frame, which can be exploited
to express arbitrary extension services. Consequently, we define a proxy as a fa-
cility that integrates extension services into existing systems by the management
of a set of plug-ins.
In sections 7 and 8, we describe a framework that allows to transparently add
extension services into EJB applications. Since, there exist no standardized in-
terception mechanism for the platform, the framework is an application-level
proxy-based solution. However, it exemplifies all aspects (complex execution or-
der of services, conditional execution, dynamic reconfiguration) described in this
paper. We outline the usage of the framework in section 8.

3 Dynamic Integration of Container Services

Changing requirements often make it necessary to provide new functionality,
like logging or monitoring, for use by components in a running software sys-
tem. Existing middleware standards do not allow for smooth integration of new
4 The proxy framework proposed can also be seen as an ‘extension service’ that allows

the integration of arbitrary services. However, we only use the term extension service
for services that extend a system

4



New_Server

Server

Extension

Variant 1 Variant 2 Variant 3

ClientClientClient

Server

Proxy
New_Server

Extension

Server

Fig. 1. Application Level Integration

services. Such services would have to be implemented as components. Existing
components can only use those components explicitly, which makes it necessary
to re-engineer the affected parts of the system. Common middleware standards
avoid this problem by facilitating implicit use of standard services. For instance,
in an EJB environment the container provides services to Enterprise JavaBeans
as described in their deployment descriptor. Whenever the service requirements
of an Enterprise Bean changes, it can be adapted by changing the contents of its
deployment descriptor and redeploying it. However, the EJB specification only
considers a limited number of standard services and provides no means for inte-
gration and implicit use of extension services. Java features such as custom class
loaders cannot be used here because of the programming restrictions imposed
by the EJB specification.
The framework described in this paper is to overcome this problem by facilitat-
ing dynamic integration of extension services and their implicit use by existing
components without the need to redeploy them. As a result of this approach,
the re-engineering effort for existing components associated with requirement
changes concerning non-functional services will decrease, the availability of the
system will improve, and third-party components will be able to use services for
which they were not developed.

3.1 Pluggable Extensions

As described in section 2, each component has a proxy that intercepts method
calls directed at the component and executes the relevant extension services.
To facilitate dynamic configuration of the system by changing service prop-
erties, the static implementation of the interceptor has to be separated from
the service code. That led to the introduction of a plug-in concept: the proxy
merely represents an interface to the system extensions, which are implemented
as exchangeable plug-ins. To execute the new functionality, the proxy reifies a
method call after intercepting it and sends it to the plug-ins. In order to operate

5



properly, the plug-ins require information about the actual method call and ad-
ditional context information, e.g. data about the interfaces of the encapsulated
component.
In order to be able to receive reified method calls, a plug-in has to provide
a generic method that takes information about a method call as arguments.
Such information would include data about the called method, e.g. name and
parameter types, and the arguments of the actual call. The structure of this
method’s implementation would be similar to an around advice in the aspect-
oriented language AspectJ [15]. While the plug-in is processing the method call,
it has the choice of forwarding it. The target of the forwarding step is another
object that provides the generic method described above. In most cases this
will be another plug-in. Eventually, the last plug-in has processed the reified call
and forwards it. Now the requested method of the wrapped component has to be
executed, which is done by the proxy shipping the method call to the component.
For this purpose, the proxy has to provide such a generic method as well, and
the proxy itself must be placed at the end of the call chain.
The forwarded method call does not necessarily need to be the same as the
received one: the plug-in can change its arguments or even the information about
the requested method itself, which would result in another method being called.
After the call has returned, the plug-in can do further operations, including
changes to the result value.
A number of context-aware services require further information, e.g. about the
the plug-in’s working environment or the identity of the client that has called a
method of the encapsulated component. For that purpose each plug-in receives
a special context object at some point in its lifecycle. By using this object in the
implementation of the plug-in, it can be developed independent of a special run-
time environment, which will increase its reusability. For instance, data about
methods offered by the encapsulated component can be used during the forward-
ing step if another method is to be called. Instead of hard-coding the method
call, reflective information provided by the context object should be used.
As stated above, system extensions offered by a plug-in must be implemented in
a generic method. In some cases the additional functionality can completely be
encapsulated in a single plug-in. However, some services are too complex, e.g.
because they require data shared by several components or plug-ins. In those
cases it could become necessary to use an external component that provides
services used by several plug-ins.

3.2 Configuring the System at Runtime

As stated above, the described framework allows for configuration of the system
at runtime. This means that new plug-ins can be integrated into the system and
distributed among the proxies. The proxy manager serves that purpose. It is the
central component that can be used to

– transfer a new proxy into the system,
– manage the configuration of the proxies, and

6



– distribute the plug-ins.

There are several stakeholders that want to use the proxy manager. After creat-
ing a new plug-in, developers have to make it available by sending it accompanied
by a meaningful description to the proxy manager. Then the proxy manager as-
signs a unique id to the plug-in and stores it persistently. From that point on,
the system administrator can use the new plug-in within proxy configurations.
For these purposes the proxy manager offers methods for querying and updating
proxy configurations. The configurations are also stored persistently to increase
robustness. After changing the configuration of a proxy, relevant plug-ins are
combined and sent to the concerned proxies.

4 Combining Plug-ins

The previous section described the general structure of a plug-in implementation
and how method calls are forwarded. Before a number of plug-ins can be delivered
to a proxy by the proxy manager, they have to be assembled in a single structure.
The problem of functional overlaps between concerns has been addressed in the
described framework by facilitating controlled execution of plug-ins.

4.1 Feature Interactions

Whereas separation of concerns during the early phases of software development
has been thoroughly investigated, their combination in a software environment
is still a major issue. In a perfect scenario, all concerns are disjoint, i.e. there
are no functional overlaps. A single concern would be implemented as a single
plug-in, and the execution of this plug-in would not affect other plug-ins. Other
technologies, e.g. the composition filter model, require concerns (implemented
as filters) to be disjoint [3].
Unfortunately, in many cases concerns do have overlaps in their functionality,
and the execution of one concern interacts with the execution of other concerns.
This is commonly known as the feature interaction problem. Before a software
system can be assembled by combining ‘features’, possible interactions among
those features have to be identified. As stated in [5], the effort of this process rises
exponentially with the number of features. But not every feature interaction can
be identified by statically examining the system, dynamic feature interactions
only occur and therefore have to be analyzed at runtime.
When developing a combination mechanism for plug-ins, the possible occurence
of feature interactions has to be considered. After identifying interactions be-
tween concerns, the developer must be given the opportunity to incorporate
this knowledge into a structure which represents the combined functionality of
several plug-ins, but is also flexible enough to handle feature interactions pro-
grammatically. A static list seems to be inappropriate, because the sequence of
execution cannot be controlled except by rearranging the list. A single element of
the list could change an incoming method call or ‘ignore’ it by simply forwarding

7



or dropping it. But if this mechanism were used to control feature interactions,
changes to the method call would affect all subsequent plug-ins and thus in-
duce further side effects. It would be impossible to restrain the changes to those
plug-ins that the given plug-in interacts with. Moreover, it would also require
the plug-in to be aware of its existence in a list and of interactions with other
plug-ins. Because this knowledge is not part of the actual concern implemented
in the plug-in, the plug-in itself would become more complex and less reusable.

4.2 Controlled Execution of Plug-ins

In the described framework extension services and their controlled combination
must be developed separately. In order to improve reusability, a plug-in should
contain the implementation of only a single extension service without references
to other services. To manage interactions between several extension services, a
special controller plug-in which governs their execution was introduced. Even
though such a controller plug-in does not implement a generic concern, it has
the same interface as the service-implementing plug-ins, i.e. it provides a generic
method for receiving reified method calls. From the proxy’s point of view, service-
implementing and controller plug-ins are indistinguishable. The communication
between the proxy and its plug-ins is defined by the specification of the generic
method, which means that a proxy is independent of a certain configuration.
Controller plug-ins are different. They are aware of their environment because
they are specifically designed for a given context. A controller ‘knows’ the plug-
ins it is working with and can use that knowledge, e.g. by calling special methods
to check the state of a plug-in, or by forwarding the method call only to a subset
of all its plug-ins.
Plug-ins are assembled in a tree-like structure with the proxy as its root and plug-
ins as the other elements. After intercepting a method call, the proxy reifies that
call and sends it to the plug-ins that are directly connected to the proxy. In the
example shown in figure 2, the plug-ins P1, P2, and P3 are used by the proxy.
Plug-in P1 controls plug-ins P11 and P12 and provides their combined services by
forwarding the reified method call to them. There is no limit on the height of the
plug-in structure, which means that controller plug-ins can use other controllers,
too.
To simplify the development of controller plug-ins, an abstract super class has
been developed. It exploits the same combination mechanism used by the proxy,
i.e. it appends itself at the end of each used plug-in, as depicted in figure 2. When
the current plug-in set is requested by a proxy, the proxy manager assembles the
plug-in structure and makes it available for the proxy.

4.3 Plug-ins in Practice

Many kinds of feature interactions are conceivable, and with the described plug-
in structure only a limited number of them can be handled. More complex struc-
tures are possible, but they are likely to require more effort to manage the prox-
ies. In the implementation of a constraint checker based on this framework, the

8



P1

Proxy

P3P2

method() method()

P11 P12 P31

invoke()

Component

Fig. 2. Method calls in a plug-in configuration

tree structure has proven to be sufficient for most problems which result from
semantical overlaps between two or more context-based constraints. Problems
and restrictions of this framework are discussed below.

5 Providing Conditional Expressions

The proxy framework allows transparent integration of extension services into
existing systems. Sometimes the execution of these services is restricted by con-
straints. We propose the separation of constraint expressions and the service’s
logic in the proxy framework, in order to isolate non-functional requirements.
Thus, services are independent of changed requirements and the framework is
able to optimize constraint evaluation.
The separation of these two aspects is localized in plug-ins, which are composed
out of two parts. The functional part of the extension service is transparently
encapsulated by a conditional part, which is separately specified. A plug-in is
generated out of the conditional part and the extension service. New constraints
result in a regeneration of plug-ins with new conditional parts. Thus, constraints
can be freely exchanged without the need to modify the extension service.
A major problem of constraint evaluation at application-level approaches is based
on the computation of required system properties. Normally, some system prop-
erties are not accessible at application level. For instance the caller ID property
is not resolvable in EJB implementations.
In the following we first give an overview of the constraint evaluation concept
and then introduce an implementation approach.

5.1 Concept of a Rule-based Evaluation

We propose to integrate conditional logic into a proxy concept based on Event
Condition Action (ECA) rules. ECA rules are typically applied in active databases
[27], where they are used to check for basic database operations and where ad-
ditional actions are triggered when specified conditions are met 5.
5 The notion of ECA rules has to be seen as analogous to ECA rules in database

systems. However it does not fulfill exactly the same functionality.

9



ECA rules are exemplified in figure 3. The event clause specifies the event that
must occur to trigger the ECA rule. An event can be related to a specific, or to
several method calls. The conditional clause contains a expression which has to
be true in order to start the action defined in the action clause.

declare rule rule name
on event
if condition
do action

end rule

Fig. 3. ECA Rule Definition

declare rule logging example
on invocation of the component ‘SalesMngt’

if call parameter ‘age’ > 17
do log

end rule

Fig. 4. Logging Example Rule

Conditions have to be stated in a subset of first-order predicate logic. They can
refer to communication parameter values, the the system state or to informa-
tion provided by other components. System information is far more difficult to
evaluate and needs supporting components, which gather actual system values.
Actions represent the extension services to be integrated.

6 Implementation of the Framework

The concepts described in the previous sections have been implemented in the
EJBComplex framework. A software system based on this framework consists
of components and pluggable ex tensions. As the name suggests, the implemen-
tation is based on the EJB specification [8]. In order to ensure portability, the
framework has been developed on application level, which means that any EJB
container can be used.

6.1 The EJBComplex Framework

Similar to stubs, the proxy has to be generated before the Enterprise Bean can be
deployed. In contrast to stub generation, the result of this step is not a vendor-
specific artifact, but another Java class that can be used as the implementation
class of a Bean. The related deployment descriptor will be adapted as well. Three
variants of proxies on application level have been discussed in section 2. Variant
3 of figure 1 is the best solution because the proxy fully wraps the old Bean.
In this case, the generated Bean class replaces the old implementation class, i.e.
there is only a single component that represents the proxy and the old Bean.
But this approach is only feasible for Session Beans, Message-Driven Beans, and
Entity Beans with bean-managed persistence or CMP 1.1, because the old bean
class has to be instantiated. This is not possible for Entity Beans with container-
managed persistence 2.0, because their methods for accessing field values must be
abstract. Because of this restriction, a separate Entity Bean with bean-managed

10



persistence that holds a reference to the old Bean has to be generated, as shown
as variant 1 in figure 1.

Proxies and plug-ins have one thing in common: they must provide a generic
method for receiving reified method calls. The interface MetaObject, which must
be implemented by all proxies and plug-ins, contains this method. Plug-ins must
also offer methods that can be used by the proxy to combine plug-ins or transfer
the context object. Because the implementation of those methods is likely to be
similar in all service-implementing and controller plug-ins, the abstract super
classes Plugin and AbstractController, respectively, have been developed.
Plug-in developers only need to implement the generic method invoke.

The proxy manager is the interface between the developers or administrators
and the EJBComplex framework. It is realized as a Session Bean, whose remote
interface provides methods for configuring the proxies. Because of restrictions
that are described below, it has a local interface that is used by proxies to obtain
the current plug-in structure. Instances of plug-ins and proxy configurations are
stored persistently in a database.

6.2 Problems and Restrictions

EJBComplex is implemented on application level, which has the advantage of
better portability of the framework because it is based solely on the EJB speci-
fication and thus can be used with any EJB container. But there are also several
disadvantages connected with this approach.

First of all, it is impossible to obtain control over standard container services.
One of those services is instance management. The server controls a pool of
instances of a certain Bean, and assigns an identity to an instance when required.
This caused a major problem for the implementation of the plug-in distribution
by the proxy manager. The best method would be to send plug-ins to the proxies
of a certain Bean immediately after its configuration has changed. That is not
feasible because the proxy manager cannot get references to all instances of a
Bean, which would also include passivated instances. Instead, the proxy has to
request plug-ins from the proxy manager each time one of its methods has been
called. Optimization techniques have been used in the implementation to reduce
communication costs and database access.

Certain types of services require the forwarding of context information. An exam-
ple for such a service is security management as described in the EJB specifica-
tion, because the identity of the caller (principal) must be transferred. Client-side
proxies that enrich a method call with such context information are a solution
to this problem. But without changing the stubs and skeletons generated by
vendor-specific tools, this behaviour could not be achieved.

11



7 Application Scenario: Context-Aware Extension
Services

7.1 Overview

The previous sections have discussed implementing extension services. This sec-
tion focuses on configuring them. An extension service can enforce a require-
ment. One requirement can apply to many communication paths between sev-
eral components. In order to enforce the requirement, all relevant plug-ins must
be configured accordingly. The manual configuration of each individual plug-in
at each communication path is expensive if many components are involved in
the requirement or if the components involved change frequently. For example,
several plug-ins may be needed at different places to enforce the following pri-
vacy policy: “Components used in the workflow ‘Create Report’ must be logged
if they invoke any component that handles personal data”. This section presents
an approach that facilitates to determine which plug-in(s) must be deployed at
which communication path(s). Its basic concepts can be explained in just a few
sentences:

1. The components are annotated with formatted metadata called ‘context
properties’. A context property describes its component’s context. In this
case, ‘context of a component’ does not refer to ‘required interfaces and the
acceptable execution platforms’ as defined in [26]. Instead, context is ‘any
information that can be used to characterize the situation of a component’
as defined in [9].

2. Section 7.2 explains a new notion of constraints called CoCons. A Cocon can
select the components involved in a requirement according to their context
property values. CoCons facilitate configuring the EJBComplex framework
as discussed in section 7.3.

7.2 Context-Based Constraints (CoCons)

The context of a component can be expressed as metadata. Metadata is typ-
ically defined as ‘data about data’. According to [1], the attribute-value pair
model is the commonly used format for defining metadata today. As well, we
suggest expressing the context of a system component in the simple attribute-
value syntax: a context property consists of a name and a set of values. The
context property values associated with a component describe the component’s
context. Two examples for context properties are used in this paper:

Personal Data: Its values ‘True’ or ‘False’ signal whether the associated com-
ponent handles data of private nature.

Workflow: Its value(s) name the current workflow(s) in which the associated
component is involved.

The primary benefit of enriching components with context properties is to iden-
tify those components that are involved in a requirement. One requirement can

12



affect several possibly unassociated components. A context-based constraint
(CoCon) can indirectly select its constrained elements according to their con-
text property values. As defined in [7], a CoCon relates two sets of elements
and expresses a predicate for each pair of related elements. The Context-Based
Constraint Language CCL introduced in [6] consists of 21 different types of Co-
Cons for defining requirements for component-based systems. This paper focuses
on the family of communication CoCons because they can control extension ser-
vices. A CoCon relates two sets of components. Let the component x be element
of the one set, and the component y element of the other set. Only one of the
communication CoCons is discussed here: a x MUST (NOT | ONLY) BE LOGGED
WHEN CALLING y CoCon specifies that (ONLY) a communication call from x to
y must (NOT) be logged. The elements (x or y ) of each set can be selected via
a context condition: if the context property values of a component comply with
the context condition then the CoCon constrains this component: The syntax
of CCL is not explained here, because it resembles plain English and is eas-
ily understood. For example, the privacy policy described in section 7.1 can be
expressed in CCL as follows:
ALL COMPONENTS WHERE ’Workflow’ = ’Create Report’ MUST BE LOGGED WHEN
CALLING ALL COMPONENTS WHERE ’Personal Data’ = ’True’.
CoCons can both directly and indirectly select elements. For example, the expres-
sion ‘c1, c4 and c7’ directly selects three components. The same set of components
can be selected via the context condition ALL COMPONENTS WHERE ’Personal
Data’ = ’True’. The indirectly selected components are anonymous. They are
not directly named or associated, but indirectly described according to their
context property values. The indirect selection automatically adapts to changed
components or context changes, while the direct selection doesn’t. For instance,
eventually a new component will be managed by the system that was not man-
aged yet when writing down the CoCon. The new component c31 is not selected
by the direct selection given above. On the contrary, the indirect selection will
automatically apply to c31 as soon as c31’s context property ‘Personal Data’ has
the value ‘True’. The indirect selection statement must not be adapted if system
components or their contexts change. Instead, the indirectly selected compo-
nents are identified by evaluating the context condition each time when the
system is checked for whether it complies with the CoCon. In order to enforce a
LOGGED WHEN CALLING CoCon, a context-aware logging-service can control the
communication call between the constrained components as described next.

7.3 Configuring the EJBComplex Framework via Communication
CoCons

An extension service can be used to enforce a non-functional requirement, like
the privacy policy discussed in the previous section. Many plug-ins at different
communication paths can be needed in order to enforce one requirement. As
explained in section 7.1, the manual configuration of each individual plug-in at
each communication path is expensive if many components are involved in the
requirement or if the involved components change frequently. If a requirement is

13



expressed via a CoCon then all plug-ins needed to implement a corresponding
extension service can automatically be configured as sketched next.

First, this section discusses how to automatically identify which plug-ins must
be deployed at which places in order to enforce a CoCon. A CoCon identifies
the constrained components via their context property values. The range of the
allowed context property values must be defined for each component. For exam-
ple, the context property ‘workflow’ might have the range (= allowed valued)
‘Create Contract’, ‘Delete Contract’ and ‘Change Contract’ for the ContractMgr
component. Only a subset of the context property values defined in the compo-
nent’s context range can be associated with the component. For instance, the
ContractMgr can be associated with the value ‘Delete Contract’ for its context
property ‘Workflow’. One CoCon can constrain several components that can in-
voke each other via different communication paths. In order to calculate which
communication paths need a plug-in, the context property range of each com-
ponent must be checked if it complies with the CoCon’s context condition. A
plug-In must be deployed at each communication path between each pair (x, y)
of constrained components.

As explained in section 5, the functionality of a plug-in should be controlled
by an ECA rule. One communication CoCon can be translated into many ECA
rules as discussed in [16] and explained next. One CoCon can constrain many
components. An ECA rule, on the other hand, refers to a particular communi-
cation path between two components. Thus, an ECA rule is generated for each
communication path between all components that are constrained by the CoCon.
In order to deploy all plug-ins needed to enforce a CoCon, the ECA rules have
to be translated into an executable source code, have to be assigned to a corre-
sponding extension service, and have to be deployed at appropriate proxies. In
these ECA rules, the event clause specifies which communication path has to be
monitored. The context conditions of the CoCon must checked in the condition
clause of the ECA rule if they refer to context property values that can change at
runtime. In this case, the context of the caller and the callee are checked at each
call, and the plug-in is only triggered if caller context and callee context fulfil
the CoCon’s context conditions. Many notations for writing down metadata as
attribute-value pairs exist and can be used for expressing the context of compo-
nents. For example, the context of a component can be defined in its deployment
descriptor in EJB systems. In Microsoft component frameworks , ‘context prop-
erties’ are already available. However, EJB deployment descriptors or Microsoft
context properties are not supposed to change at runtime. Therefore, we sug-
gest managing context properties via an extra component that provides their
current values for each component. If a call fulfils the ECA rule’s condition then
an action is executed by the plug-in as stated in the actions clause of the ECA
rule. This action must correspond to the Communication CoCon type in order to
enforce the CoCon. For instance, the action ‘log this call’ corresponds to LOGGED
WHEN CALLING CoCons.

The people who need a new requirement to be enforced often neither know the
details of every part of the system nor do they have access to the complete source

14



code. CoCons can be expressed via the language CCL similar to plain English.
Moreover, CCL expressions stay on an abstract level that improves comprehen-
sibility. When configuring extension services via CCL expressions, developers or
administrator don’t have to understand every detail of the system (‘glass box
view’). Instead, they only must understand in which context the components
reside that must meet their goal. The context property values of a component
can be adapted whenever the context of a component changes without chang-
ing the component or the extension service itself. Moreover, a component that
was unknown when specifying the CoCon becomes automatically constrained by
the CoCon simply by having the matching context property value(s). It can be
unknown which components are involved in the requirement when expressing
it in CCL. Hence, the constrained components can change without modifying
the CoCon expression. The indirect selection of constrained components is par-
ticularly helpful in highly dynamic or complex systems. Every new, changed or
removed component is automatically constrained by a CoCon according to the
component’s context property values. A flexible framework is needed in order to
enforce Communication CoCons at runtime, because both contexts and require-
ments can change at runtime. Such a framework needs all the features provided
by the EJBComplex framework: it needs complex execution order of plug-ins,
conditional execution of plug-ins, as well as dynamic configuration of plug-ins.

8 Related Work

This paper presents a concept for integrating additional functionalities into ex-
isting systems without modifying the system’s components. For this purpose, a
mechanism is needed which is able to transparently integrate these functional-
ities into existing systems. Connectors, which are considered first-class entities
in the field of software architecture [18,23,24], describe such a mechanism on an
abstract level. Within existing middleware technologies, there are different ways
to realize a connector [13,17,2]. However, this paper focuses on approaches using
the proxy pattern [11], which allows the transparent integration of non-functional
services [22,4,12,21].
The lack of decomposition features in many programming paradigms has been
addressed by a number of research groups. Aspect-oriented programming [14]
separates components, which represent the functional part of a system, from
aspects, which cross-cut the system’s functionality. The composition filter model
[3] adds an additional layer of filters to extend the functionality of a base object.
Our plug-in mechanism is closely related to these technologies, although we allow
dynamic reconfiguration and use a more complex combination mechanism.
A CoCon defines a network policy between clients using network resources and
the network elements that provide those resources. The Internet Engineering
Task Force (IETF) has defined a policy model for policy-based networking in [19]
An underlying assumption of this model is that policies are stored in a centralized
repository. The policy repository is one of three important entities of the model.
The other entities are the policy enforcement points (PEPs) and policy decision

15



point (PDP). On the contrary, this paper suggests a decentralized approach for
enforcing network policies. The EJBComplex framework provides a distributed
architecture in which each plug-in (or PEP) stores a part of the policy as an
ECA rule. Thus, EJBComplex plug-ins do not need to request a decision from a
PDP server. The main interest in network policies is managing and controlling
the quality of service (QoS). In contrast to prevailing network policy approaches,
this paper does not focuses on QoS. On the contrary, the key notion of extension
services is adding non-functional requirements to a system, like logging certain
calls or encryption.One of the recent network policy approaches is the path-based
policy language (PPL) described in [25]. It provides control over the traffic in
a network by constraining the path the traffic must take. A PPL path may
include wild card characters. The use of a wild card character is similar to using
a context condition - both approaches can express one statement that constrains
many paths. They differ, however, in the criteria for selecting the constrained
paths. While PPL expressions use technical criteria for selecting the constrained
paths, CoCons use semantical criteria. We believe that semantical criteria are
more comprehensible, because the expression ‘all nodes whose IP address starts
with 123.45.67.*’ does not tell why these nodes are selected, while ‘all nodes
which manage personal data’ does.

9 Conclusions

Requirement changes demand continuous adaptation of a software system through-
out its lifetime. This paper is concerned with non-functional aspects of a system,
which can be transparently integrated using an interception mechanism with-
out modifying existing components. Thus, this paper proposes the separation of
non-functional requirements from system components. There are several existing
approaches that engage the technical aspects of service integration. The objec-
tive of this paper is to enrich these approaches with additional aspects dealing
with complex service order and conditional service execution.
The proposed framework demonstrates these objectives. Extension services are
implemented as plug-ins, which can be dynamically integrated into the system
without changing any of its components. The extension services are used im-
plicitly by existing components. This is achieved by intercepting method calls
directed at the component by the proxy and executing the plug-ins using a
generic interface.
The interface to the framework is the proxy manager. It can be used to transfer
plug-ins into the system and to change the configuration of proxies at runtime.
The proxy manager is also responsible for combining the plug-ins designed for a
certain proxy. For that purpose, a flexible tree structure is used. The configura-
tion of a proxy may contain special plug-ins that control the execution of other
plug-ins. Problems resulting from functional overlaps can be programmatically
handled using this feature. The combination structure for plug-ins has proven to
be sufficient for a number of semantic overlaps between plug-ins. Furthermore,
the separation of conditional logic and functionality of an extension service is

16



proposed. Non-Functional Requirements are formulated as ECA rules. Based on
these rules, plug-ins can be generated.
Components constrained by a context-aware extension service can be indirectly
selected according to their context property values. A context-aware extension
service automatically adapts whenever the context of a component or a user
changes without changing the component or the extension service itself. Hence,
context-aware extension service easily adapts to changed contexts, changed re-
quirements or changed configuration. Communication CoCons can define context-
aware extension services. However, contexts and requirements can change at
runtime. Hence, all features of the proposed framework are needed in order to
transparently realize context-aware extension services: complex execution order
of plug-ins is needed as well as conditional execution of plug-ins as well as dy-
namic configuration of plug-ins. The EJBComplex framework has prototypically
been implemented providing these features. It has successfully been used for
monitoring CoCons at runtime.

References

1. Thomas Baker. A grammar of dublin core. D-Lib Magazine, 6(10):47–60, October
2000.

2. BEA Systems, Inc. BEA WebLogic Server, Using WebLogic Server Clusters, March
2001.

3. L. Bergmans and M. Aksit. Composing crosscutting concerns using composition
filters. Communications of the ACM, 44(10):51 – 57, October 2001.

4. Marko Boger, Toby Baier, Frank Wienberg, and Winfried Lamersdorf. Structuring
QoS-supporting services with smart proxies. In Extreme Programming and Flexible
Processes in Software Engineering - XP2000. Addison-Wesley, 2000.

5. T.F. Bowen, F.S. Dworack, C.H. Chow, N. Griffeth, G.E. Herman, and Y-J. Lin.
The feature interaction problem in telecommunication systems. In 7th Interna-
tional Conference on Software Engieering For Telecommunication Switching Sys-
tems, pages 59 – 62, 1998.

6. Felix Bübl. The context-based constraint language CCL for components. Tech-
nical Report 2002-20, Technical University Berlin, available at www.CoCons.org,
October 2002.

7. Felix Bübl. Introducing context-based constraints. In Herbert Weber and Ralf-
Detlef Kutsche, editors, Fundamental Approaches to Software Engineering (FASE
’02), Grenoble, France, volume 2306 of LNCS, pages 249–263, Berlin, April 2002.
Springer.

8. Linda G. DeMichiel, L. Ümit Yalçinalp, and Sanjeev Krishnan. Enterprise jav-
abeans specification, version 2.0. Sun Microsystems, http://java.sun.com/j2ee,
August 2001. Sun Microsystems.

9. Anind K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting Journal, 5(1):4–7, 2001.

10. Hans Rohnert Douglas Schmidt, Michael Stal and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Distributed Objects.
John Wiley & Sons, 2000.

11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

17

http://www.cocons.org/publications/CCL_technical_report.pdf
http://java.sun.com/j2ee


12. Rushikesh K. Joshi. Modeling with filter objects in distributed systems. In Pro-
ceedings of the 2nd Workshop on Engineering Distributed Objects, (EDO 2000),
volume 1999 of LNCS, pages 182 – 187. Springer Verlag, November 2000.

13. Yariv Kaplan. API spying techniques for windows 9x, NT and 2000.
http://www.internals.com/articles/apispy/apispy.htm, 2001.

14. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, ECOOP ’97 — Object-Oriented Programming 11th European Conference,
Jyväskylä, Finland, volume 1241, pages 220–242. Springer, New York, 1997.

15. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. Getting started with aspectj. Communications of the ACM,
44(10):59 – 65, October 2001.

16. Andreas Leicher and Felix Bübl. External requirements validation for component-
based systems. In A. B. Pidduck, J. Mylopoulos, C. C. Woo, and M. T. Ozsu,
editors, 14th Conference on Advanced Information Systems Engineering (CAiSE
’02), Toronto, Canada, volume LNCS 2348, pages 404 – 419, Berlin, May 2002.
Springer.

17. Dmitri Leman. Spying on com objects. Windows Developer’s Journal, July 1999.
18. Nikunj R. Mehta. Software connectors: A taxonomy approach. In Workshop

on Evaluating Software Architectural Solutions 2000. Institute for Software Re-
search University of California, Irvine, 2000. http://www.isr.uci.edu/events/

wesas2000/position-papers/mehta.pdf.
19. Bob Moore, Ed Ellesson, John Strassner, and Andrea Westerinen. Policy core in-

formation model - version 1 specification (rfc 3060). Technical report, The Internet
Society, 2001.

20. JBoss Organization. Jboss website. http://www.jboss.org, December 2001.
21. G. S. Reddy and R. K. Joshi. Filter objects for distributed object systems. Journal

of Object Oriented Programming, 13(9):12–17, January 2001.
22. E. F. Robert, S. Barret, D. D. Lee, and T. Linden. Inserting ilities by controlling

communications. Communications of the ACM, 45(1):116–122, January 2002.
23. Mary Shaw. Procedure calls are the assembly language of software interconnection:

Connectors deserve first-class status. In ICSE Workshop on Studies of Software
Design, pages 17–32, 1993.

24. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. PH, April 1996. ISBN 0131829572.

25. Gary N. Stone, Bert Lundy, and Geoffrey Xie. Network policy languages: A survey
and a new approach. IEEE Network, 15(1):10–21, January 2001.

26. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1999. ISBN: 0-201-17888-5.

27. Jennifer Widom and Umeshwar Dayal. A Guide To Active Databases. Morgan-
Kaufmann, 1993.

18

http://www.isr.uci.edu/events/wesas2000/position-papers/mehta.pdf
http://www.isr.uci.edu/events/wesas2000/position-papers/mehta.pdf

	Integrating Container Services with Pluggable System Extensions
	Andreas Leicher, Alexander Bilke, Felix Bübl, E. Ulrich Kriegel

