What Must (Not) Be Available Where?

Felix Biibl!

imphar AG, Berlin, Germany
felix.buebl@imphar.com

Abstract Arranging the distribution of data, objects or components is
a critical task that can ultimately affect the performance, integrity and
reliability of distributed system. This paper suggests to write down what
must (not) be available where in order to reveal conflicting distribution
requirements and to detect problems early on. Distribution requirements
are expressed via a new notion of constraints: a context-based constraint
(CoCon) can indirectly select its constrained elements according to their
context. The context of an element characterizes the situation in which
this element resides and is annotated via metadata. CoCons facilitate
checking the compliance of a system or a model with distribution re-
quirements during (re-)design, during (re-)configuration or at runtime.
This paper focuses on validating UML models for compliance with dis-
tribution CoCons in order to take distribution requirements into account
right from start of the development process.

1 Introduction

1.1 Recording Distribution Decisions

Up to now the rationale for distribution decisions is barely recorded during
the design and development of software system. Instead, distribution is typi-
cally taken into account during implementation or deployment and is expressed
directly in configuration files or in source code. But, the context for which a
software system was designed changes continuously throughout its lifetime. In
order to prevent the violation of distribution requirements when adapting a sys-
tems to new requirements, the distribution requirements must be written down.
By using a formal language for expressing distribution requirements, a system
can automatically be checked for whether it complies with these distribution
requirements.

After distributed applications became popular and sophisticated in the 80s,
over 100 programming languages specifically for implementing distributed appli-
cations were invented according to [2]. But hardly anyone took distribution into
consideration already on the design level. In order to reveal conflicting distribu-
tion decisions and to detect problems early on, they should be written down and
considered already in the model. Fixing them during implementation is much
more expensive. Moreover, distribution requirements should be expressed in an
artefact-independent way: it should be possible to check the system’s model as

well as its source code or its configuration files for compliance with distribution
requirements without restating the distribution requirements for each artefact
type. Artefact-independent expressions can be considered throughout the life-
time of a distributed system — they enable software development tools to detect
the violation of distribution requirements automatically during (re-)design, (re-)
configuration or at runtime.

This paper proposes to specify distribution requirements via constraints. For
instance, one distribution constraint can express which element must (not) be
allocated to which computer. An element can be an object, data, or component.
This paper focuses on components. When applying the approach discussed here
during modelling, please read ‘element’ as model element throughout the paper.
However, keeping track of each individual elements becomes increasingly difficult
if the number of components or computers grows. In large-scale systems, it is not
practical to specify distribution constraint relating to individual components or
individual computers. Instead, it must be possible to specify constraints relating
to possibly large groups of elements. Furthermore, this difficulty increases if the
components or computers involved change frequently. In complex or frequently
changing system, it is too expensive to write down which individual component
must (not) reside on which individual computer. Therefore, this paper suggest
to express distribution requirements in an adaptive way: a new specification
technique is presented that defines what must (not) be available where according
to the components’s or the computer’s context.

1.2 Example: Availability Requirement

The following availability requirement is used as an example in this paper: All
components needed in the workflow ‘Create Report’ must be allocated to all com-
puters belonging to the ‘Controlling’ department. Due to this requirement, any
computer of the controlling department can access all the components needed in
the workflow Create Report even if the network fails. Hence, the availability of
the workflow Create Report is ensured on these computers. But, which system
elements should be checked for whether they are (not) allocated to which com-
puters? How can the system be checked for compliance with this requirement?
The answers start in the next section.

1.3 The Paper in Brief

This paper suggests defining distribution requirements via Context-Based Con-
straints (CoCons). Their basic concept introduced in [5] can be explained in just
a few sentences.

1. The system elements, e.g. components or computers, are annotated with
formatted metadata called ‘context properties’. A context property describes
its element’s context. As defined in section [2] context is any information that
can be used to characterize the situation of an element.

2. Only those elements whose context property values fit the CoCon’s context
condition must fulfil the constraint. Up to now, constraints do not indirectly
select their constrained elements according to their context properties as
explained in section

3. A CoCons refers to two sets of elements. It relates each element x of one
set to each element y of the other set and defines a condition C(x,y) on
each pair of related elements. If one set contains components and the other
set contains computers then this condition on a pair of related elements can
state that ‘x must be allocated to y’ as discussed in section [4]

When adapting a systems to new, altered or deleted requirements, existing
distribution requirements should not unintentionally be violated. Two different
kinds of automatically detectable CoCon violations are discussed in this paper:

— An inter-CoCon conflict occurs if one CoCon contradicts another CoCon
as discussed in section [Bl

— An illegal artefact element conflict occurs if a artefact element does not
comply with a CoCon’s predicate on how it must (not) relate to another arte-
fact element. As an example, checking the compliance of UML deployment
diagrams with distribution requirements is discussed in section [0}

2 Context Properties

2.1 What is Context?

This paper focuses on the context of software system elements. It uses context
for one specific purpose explained in previous section: it refers to context of
software system elements in order to distinguish those elements that reside in
the same context from other elements that don’t.

The context models used in software engineering typically focus on internal
context of software systems as explained next. A software system consists of
artefacts, like source code files, configuration files, or models. One artefact can
consist of several elements. An internal element is contained in at least one
of the system’s artefacts. For example, the name of a component, the name
of a method, or the name of a method’s parameter are internal elements. On
the contrary, an external element is not contained in any of the system’s
artefacts. An internal context of a software system element refers to other
internal elements. It does not refer to external elements.

For example, the ‘context of a component’ is defined as ‘the required in-
terfaces and the acceptable execution platforms’ of components in [23]. This is
an internal notion of context because it only refers to internal elements: other
components or containers are defined as context of a component. Likewise, the
context of an Enterprise Java Bean is defined as ‘an object that allows an enter-
prise bean (EJB) to invoke container services and to obtain information about
the caller of a client-invoked method’. Once more, the context of a component

(the EJB) only refers to other internal elements: both the container and the call-
ing component are system elements. This paper proposes also to take external
contexts into account. It suggests to select constrained elements according to
their context regardless whether their context is part of the system or not.

Context is defined in [TI] as ‘any information that can be used to charac-
terize the situation of an entity’. This definition needs a precise definition of
‘situation’. In situation calculus ([10]), situation is defined as structured part
of the reality that an agent manages to pick out and/or to individuate. This
definition suits well for this paper because context is used here for distinguish-
ing those elements that are involved in a requirement from the other elements
that don’t. A context is not a situation, for a situation (of situation calculus) is
the complete state of the world at a given instant. A single context, however, is
necessarily partial and approximate. It cannot completely define the situations.
Instead, it only characterizes the situation.

Section will present a syntax and informal semantics for expressing (sit-
uational) context of software elements.

2.2 Context Properties: Formatted Metadata Describing Elements

The context of an element can be expressed as metadata. ‘Metadata’ is typically
defined as ‘data about data’. According to [I], the attribute-value pair model is
the commonly used format for defining metadata today. As well, the context of a
system element is epressed in the simple attribute-value syntax here: a context
property consists of a name and a set of values.

First, this section defines a textual syntax of context properties via BNF
rules. Afterwards, it informally explains the semantics of context properties.

The standard technique for defining the syntax of a language is the Backus-
Naur Form (BNF), where “:=" stands for the definition, “Text” for a nonter-
minal symbol and “TEXT” for a terminal symbol. Square brackets surround
[optional items], curly brackets surround {items that can repeat} zero or more
times, and a vertical line ‘|’ separates alternatives. The following syntax is used
for assigning values of one context property to an element:

ConPropValues ::= ContextPropertyName [¢(’ ElementName ‘)’] ‘:’ Context-
PropertyValue {‘,” ContextPropertyValue}

A context property name (called ContextPropertyName in the syntax defi-
nition given above) groups context property values.

For instance, the values of the context property ‘Workflow’ reflect the most
frequent workflows in which the associated element is used. Only the names
of the workflows used most often are taken into account for requirement spec-
ification here. In this case, the name of the context property is ‘Workflow’.
The BNF rule ContextPropertyValue defines the valid values of one con-
text property name. For instance, the four values allowed for Workflow can be
ContextPropertyValue := ‘New Contract’ | ‘Delete Contract’ | ‘Create
Report’ | ‘Split Contract’. A subset of the valid values can be associated

with a single element for each context property name. These values describe how
or where this element is used — they describe the context (as discussed in section
of this element. The context property name stays the same when associating
its values with several elements, while its values might vary for each element.

2.3 Research Related To Context Properties

Many notations for writing down metadata as attribute-value pairs exist and
can be used for expressing the context of elements. For example, tagged values
([15]) can be used to express context properties in UML.

As summarized in [20], a concept similar to context properties was discussed
in the 90ties: database objects are annotated via intensional description called
‘semantic values’ ([21I19]) in order to identify those objects in different databases
that are semantically related. Likewise, context properties are annotated to ele-
ments in order to determine the relevant element(s). However, the semantic value
approach has a different purpose and, thus, a different notion of relevant: the
purpose of semantic values is to identify semantically related objects in order to
resolve schema heterogeneity among them. On the contrary, context properties
are not annotated in order to identify those database objects in heterogeneous
databases that correspond to each other. Instead, context properties are an-
notated to elements in order to identify those elements that are involved in a
certain requirement as explained in the next section. The application of seman-
tical values differs from the application of context properties. Still, the concepts
are similar because they both can denote elements residing in the same context.

Another concept similar to context properties are ‘domains’ introduced in
[22]. They provide a means of grouping objects to which policies apply. In con-
trast to context properties, a domain does not consist of a name and correspond-
ing values. Instead, a domain consists of one single term. Domains are a unit of
management similar to file directories in operating systems, and provide hierar-
chical structuring of objects. As well as any other metadata concept, domains
can be used to express the context of elements. Section will explain that con-
text can be expressed with any metadata concept as long as a query language
for the other metadata concept exists.

A context property groups elements that share a context. Existing grouping
mechanisms like inheritance, stereotypes or packages are not used because the
values of a context property associated with one element might vary in different
configurations or even change at runtime. An element is not supposed to change
its stereotype, its inheritance, or its package at runtime. Context properties are
a simple mechanism for grouping otherwise possibly unassociated elements -
even across different views, artefact types, or platforms. The primary benefit of
enriching elements with context properties is revealed in the next section, where
they assist in identifying those elements that are involved in a requirement.

3 Context-Based Constraints (CoCons)

3.1 Indirect Selection of Constrained Elements

This section presents a new notion constraints that can indirectly select the con-
strained elements when expressing which component must (not) be available at
which computers. A context-based constraint (CoCon) can indirectly select
the constrained elements according to their context property values. It expresses
a condition on how its constrained elements must be related to each other. This
condition is called CoCon-predicate here. Different types of CoCon-predicates
exist. A ‘CoCon-predicate type’ is abbreviated as CoCon type here. Hence, ‘Co-
Con type’ is a synonym for ‘CoCon-predicate’. The Context-Based Constraint
Language CCL introduced in [4] consists of 21 different types of CoCons. This
paper, however, discusses only those CoCon types of CCL that define distribu-
tion requirements.

Target Set Scope Set

Figurel. A CoCon Relates any Element of the ‘Target Set’ with any Element
of the ‘Scope Set’

Figure [1] illustrates that a CoCon relates each element of one set to each
element of the other set and expresses a CoCon-predicate (depicted as dotted
arrows) for each pair of related elements. The two sets related by a CoCon are
called ‘target set” and ‘scope set’. Both target set elements and scope set elements
of a CoCon can either directly or indirectly be selected. Indirect selection is
the key concept of context-based constraints. A CoCon can indirectly select
set elements via a context condition that defines, which context property
values an element must (not) have in order to be constrained by the CoCon.
If the context property values of an element comply with the CoCon’s context
condition then the CoCon constrains this element: in that case, this element must
fulfil the CoCon-predicate in relation to other constrained elements. In section
the target set elements are selected via the following context condition: “All
components whose context property ‘Workflow’ has the value ‘Create Report’
?. These target set elements are anonymous. They are not directly named or
associated, but described indirectly according to their context property values.
If no element fulfils the context condition, the set is empty. This simply means
that the CoCon actually does not apply to any element at all.

The same set of elements can both be selected directly and indirectly. For
example, the direct selection ‘component,, component, and component;’ can
describe the same components as All components whose context property ‘Work-
flow’ has the value ‘Create Report’. However, the indirect selection automati-
cally adapts to changed elements or context changes, while the direct selection
doesn’t. For instance, eventually a new component will be managed by the sys-
tem that was not managed yet when writing down the CoCon. The new com-
ponent components; is not selected by the direct selection given above. On the
contrary, the indirect selection will automatically apply to components; as soon
as components;’s context property ‘Workflow’” has the value ‘Create Contract’.
The indirect selection statement must not be adapted if system elements or their
contexts change. Instead, the indirectly selected elements are identified by eval-
uating the context condition each time when the system is checked for whether
it complies with the CoCon.

The concept of CoCons is independent of the context property data schema.
A simple and flat attribute-value schema for context properties has been intro-
duced in section [2| Of course, more expressive data schemata for storing the
context properties of one element, e.g. hierarchical, relational, or object-oriented
schemata, can be used. The query language used to specify the context condi-
tion depends on the context properties data schema. If the context properties of
each artefact element are stored in a relational schema then a relational query
language, e.g. SQL, can be used to express context conditions. If the context
properties are, e.g., stored in a hierarchical XML schema then a query language
for XML document can be used, e.g. XQuery. However, this paper focuses on
the non-hierarchical, non-relational, non-object-oriented data schema for context
properties defined in section

3.2 Two-Step Approach for Defining CoCon Type Semantics

This section discusses how to formally define the CoCon semantics.

Abstract Semantics Ere ‘
= Definition of CCL For i - Used UML 1.4
[— | = |
> CoCon Types UML 1.4 —= Semant(lcs DEfiflifen o By | Metamodel
Q . . ¥ in OCL
- (in plain English) P
& - \
%T Used By Used By Used By
j2 RJ_' e7
Ei —
g Monitoring Tools =
o forUML1.4 — Check—{>= UML14
4 Models Models
<
o]
=

Figure 2. Two-Step Approach for Defining the Semantics of CoCons

CoCons can be applied to artefacts at different development levels, e.g. mod-
els at design level or component instances at runtime. Different artefact types
or different versions of the same artefact type can be used at each development
level. For instance, UML 1.4 models or other specification techniques can be
used at the design level. Figure [2] illustrates the two-step approach for defining
semantics of CoCon types for the artefact type ‘UML 1.4 models’:

— The artefact-type-independent semantics definition of a CoCon type
does not refer to specific properties of an individual artefact type as discussed
in section 3.3

— The artefact-type-specific semantics definition of a CoCon type refers
to a metamodel of a specific artefact type in order to define the semantics in
terms and constructs of this metamodel in a formal or semi-formal language.
For example, which concepts express ACCESSIBLE TO in UML 1.4 models?
Section |§| will discuss which UML model elements must (not) be associated
in which way with which other UML model elements in order to comply with
ACCESSIBLE TO CoCons.

3.3 Formalization of Context-Based Constraints

Instead, CoCons are a limited version of predicate logic as described next. A
CoCon expresses a condition on how its constrained elements must be related to
each other. This condition is called CoCon-predicate. Each element of the target
set must relate to each element of the scope set as defined by the polyadic CoCon-
predicate. The CoCon semantics can be expressed via the following predicate
logic formula:

Va,y: T(z) AS(y) — Clx,y)

The CoCon-predicate is defined via a (polyadic) relation C(z,y), like x MUST
BE ACCESSIBLE TO y. On the contrary, T'(x) and S(y) are monadic predicates on
a different level. They define the context condition and are specified via a query
language. T'(z) represents the target set context condition, and S(y) represents
the scope set context condition. The variable = holds all elements in the target
set, and the variable y hold all elements in the scope set. In order to represent a
CoCon, T'(x) must define a condition on the context property values of x, and
S(y) must define a condition on the context property values of y.

Each CoCon-predicate C(z,y) can be combined with the CoCon-predicate
operation NOT or ONLY:

— NOT negates the relation C(x,y) as follows: Va,y : T(z) A S(y) — —C(z,y)
— ONLY is mapped to two propositions:

o Va,y: T(x) A=S(y) — ~C(z,y)

o Vr,y:T(x)ANS(y) — C(z,y)

3.4 Research Related to Context-Based Constraints

The key concept of CoCons is the indirect selection of constrained elements.
Any unknown element becomes involved in a context-based constraint simply by
having the matching context property value(s). Hence, the constrained elements
can change without modifying the CoCon specification. The indirect selection
of constrained elements is particularly helpful in highly dynamic systems or
models. Every new, changed or removed element is automatically constrained
by a CoCon due to the element’s context property values.

A recent and interesting access control policy approach can indirecly select
the constrained network elements: the Ponder language for specifying manage-
ment and security policies is defined in [9]. Three differences between CoCons
and Ponder exist. First, CoCons don’t have operational semantics, while Ponder
has. Second, Ponder does not address distribution requirements, while CoCons
do. And finally, Ponder is based on the domain concept discussed in section [2.3
Similar to context conditions, Ponder uses domain scope expression ([24]) for
selecting elements according to their domain. A domain, however, consists of a
single name, while context properties consist of a name and values.

4 Distribution CoCons

4.1 The Notion of Distribution CoCons

Distribution CoCons determine whether the target set elements have to be avail-
able at the CoCon’s scope elements or not. The target set of a distribution CoCon
can contain any element type that can be contained in other elements, such as
‘components’ can be contained in ‘containers’. As well, the scope set of distribu-
tion CoCons can contain any element type that can contain the other element
type of the target set. However, nothing but ‘components’ in the target sets and
‘computers’ in the scope sets of distribution CoCons are discussed here.

4.2 Distribution CoCon Types

This section proposes several CoCon types for expressing distribution require-
ments. Each CoCon type can be combined with the CoCon-predicate opera-
tion ‘NOT’ or ‘ONLY’ after the keyword MUST. For example, the CoCon type
ALLOCATED TO can either state that certain elements MUST BE ALLOCATED TO
other elements, or that they MUST NOT BE ALLOCATED TO other elements, or
that they MUST ONLY BE ALLOCATED TO other elements. The abbreviation ‘ (NOT
| ONLY)’ is used to refer to all three possible CoCon-predicate operations of one
CoCon type in the next sections.

A (NOT | ONLY) ALLOCATED TO CoCon defines that the components in its
target set must (NOT | ONLY) be deployed on the containers or the computers
in its scope set.

Replication is well known in distributed databases and can also be realised
with some middleware platforms. In this paper, the term ‘a component is repli-
cated’ means that the component’s state is serialized and the resulting data is
copied. The following CoCon types handle replication:

A (NOT | ONLY) SYNCHRONOUSLY REPLICATED TO CoCon de-
fines that the components in its target set must (NOT | ONLY) be synchronously
replicated from where they are allocated to — specified via ALLOCATED TO CoCons
— to the elements in its scope set.

A (NOT | ONLY) ASYNCHRONOUSLY REPLICATED TO CoCon
defines that the components in its target set must (NOT | ONLY) be asynchronously
replicated from their allocation — their allocation is specified via ALLOCATED TO
CoCons — to the elements in its scope set.

4.3 Examples for Using Distribution CoCons

The ‘availability’ requirement introduced in section |1.2| can be written down via
CCL as follows:

ALL COMPONENTS WHERE ‘Workflow’ CONTAINS ‘Create Report’ MUST BE
ALLOCATED TO ALL COMPUTERS WHERE ‘Operational Area’ CONTAINS ’Controlling’

The values of the context property ‘Operational Area’ describe, in which
department(s) or domain(s) the associated element is used. It provides an or-
ganisational perspective.

4.4 Related Research on Distribution and Network Policies

One way in which we cope with large and complex systems is to abstract away
some of the detail, considering them at an architectural level as composition of
interacting objects. To this end, the variously termed Coordination, Configura-
tion and Architectural Description Languages facilitate description, comprehen-
sion and reasoning at that level, providing a clean separations of concerns and
facilitating reuse. According to [13], in the search to provide sufficient detail for
reasoning, analysis or construction, many approaches are in danger of obscuring
the essential structural aspect of the architecture, thereby losing the benefit of
abstraction. On the contrary, CoCons stay on an abstract level in order to keep
it simple.

Aspect-oriented languages supplement programming languages with proper-
ties that address design decisions. According to [12], these properties are called
aspects and are incorporated into the source code. Most aspect-oriented lan-
guages do not deal with expressing design decisions in during design. D?AL
(B]) differs from the other aspect oriented languages in that it is based on the
system model, not on its implementation. Objects that interact heavily must
be located together. D2 AL groups collaborating objects that are directly linked
via associations. It describes in textual language in which manner these objects

interact which are connected via these associations. This does not work for ob-
jects that are not directly linked like ‘all objects needed in the ‘Create Report’
workflow.

Darwin (or ‘darwin’) is a configuration language for distributed systems de-
scribed in [I6] that, likewise, expresses the architecture explicit by specifying
the associations between objects. However, there may be a reason for allocating
objects together even if they do not collaborate at all. For instance, it may be nec-
essary to cluster all objects needed in a certain workflow regardless whether they
invoke each other or not. Distribution CoCons allocate objects together because
of shared context instead of direct collaboration. They define a context-specific
cluster. Distribution CoCons assist in grouping related objects into subject-
specific clusters and define how to allocate or replicate the whole cluster.

Recent work by both researchers ([7]) and practitioners (|I8]) has investigated
how to model non-functional requirements and to express them in a form that is
measurable or testable. Non-functional requirements (also known as quality re-
quirements) are generally more difficult to express in a measurable way, making
them more difficult to analyse. They are also known as the ‘ilities’ and have defied
a clear characterisation for decades. In particular, they tend to be properties of a
system as a whole, and hence cannot be verified for individual system elements.
The distribution CoCon types introducesd here specify non-functional require-
ments. Via the two-step semantics definition, these CoCon types can clearly
express ‘ilities’. They are particulary helpful in expressing crosscutting ilities
that apply to more than one system element, because one CoCon can select
several involved elements according to their context property values.

5 Detectable Conflicts of Distribution CoCons

If distribution requirements CoCons contradict each other then an tool interpret-
ing the CoCons will not be able to perform an action appropriately because one
CoCon negates the effect of the other. Thus, it is important to have a means of
detecting and resolving any conflicts that arise. A conflict between constraints
arises if they express opposite conditions on the same elements. This section
defines inter-CoCon conflict detection constraints (short: inter-CoCon
constraints). First, three general inter-CoCon constraints are presented that
apply to each of the distribution CoCon types defined in section f:2] In pred-
icate logic, each of these CoCon types can be expressed as C(z,y). The first
inter-CoCon constraint can apply if one CoCon has a NOT operation, while an-
other CoCon of the same CoCon type hasn’t.

General Inter-CoCon Constraint 1: The two CoCons Vz,y : Ti(z) A Si(y) —
C(z,y) and Va,y : To(x) A S2(y) — —C(x,y) contradict each other if 3,y :
Ty () ATa(x) A Si(y) A S2(y).

If C(x,y) is defined as x MUST BE ALLOCATED TO y CoCon-predicate then
this general inter-CoCon constraint states that no element z must both be

ALLOCATED TO and NOT ALLOCATED TO any y. For instance, the following pri-
vacy policy informing forbids to manage personal data on web servers: ALL
COMPONENTS WHERE ‘Handles Personal Data’ CONTAINS ‘True’ MUST NOT BE
ALLOCATED TO ALL COMPUTERS WHERE ‘Installed Software’ CONTAINS ‘Web
Server’. According to the general inter-CoCon constraint, this privacy policy
contradicts the availability-policy presented in section if a web server is in-
stalled on any computer used by the controlling department.

The next two inter-CoCon constraints take the CoCon type operation ONLY
into account. The semantics of the operation ONLY are defined in section [3.3
The following inter-CoCon constraint applies if one CoCon without CoCon type
operation contradicts another CoCon with the CoCon type operation ONLY:

General Inter-CoCon Constraint 2: The two CoCons
— Va,y: Th(z) A S1(y) — C(x,y) and
— Va,y: Ta(z) A Se(y) — —C(x,y)
Va,y: Ta(z) A Sa(y) — C(z,y)
contradict each other if Iz, y : Ty (z) A To(x) A S1(y) A —S2(y).

The following inter-CoCon constraint applies if one CoCon with the CoCon
type operation ONLY contradicts another CoCon with the CoCon type operation
ONLY:

General Inter-CoCon Constraint 3: The two CoCons
— Va,y: Ti(z) A =S1(y) — =C(x,y)
Va,y: Ty (z) A S1(y) — C(z,y) and
= Va,y : Ta(x) A =S2(y) — —C(2,y)
Vm,y : TZ(x) A SQ(y) - C(l’,y)
contradict each other if Jz,y : T1(x) A Ta(x) A ((=S1(y) A S2(y)) V (S1(y) A
~S5(1).

Besides the general inter-CoCon conflict detection constraints, CoCon-type
specific inter-CoCon conflicts exist as listed next. The elements e; and e are
target or scope set elements of distribution CoCons with 7 # k. An inter-CoCon
conflict exists if any of the following inter-CoCon constraints is violated:

1. No element e; may be both NOT ALLOCATED TO e; and SYNCHRONOUSLY REPLICATED
TO €.

2. No element e; may be both NOT ALLOCATED TO e; and ASYNCHRONOUSLY
REPLICATED TO eg.

3. No element e; may be both ALLOCATED TO e; and SYNCHRONOUSLY REPLICATED
TO €.

4. No element e; may be both ALLOCATED TO e; and ASYNCHRONQUSLY REPLICATED
TO eg.

5. No element e; may be both SYNCHRONOUSLY REPLICATED TO ej and ASYNCHRONOUSLY
REPLICATED TO eg.

Inter-CoCon conflicts can be handled by assigning a different priority to
each CoCon — only the CoCon with the highest priority applies. If this Co-
Con is invalid because its scope or target set is empty then the next CoCon
with the second-highest priority applies. This section has demonstrated that
conflicting CoCons automatically can be detected by checking the constrained
elements (identified via context conditions) if they violate one of the inter-CoCon
constraints defined above. Hence, the conflicting distribution requirements can
automatically be detected. This is a major benefit of CoCons.

6 The CoCon Type Semantics for UML

Software tools can support software designers in monitoring the artefacts of
a development process for compliance with distribution CoCons if the artefact-
specific semantics of the distribution CoCon types are defined. This paper focuses
on checking UML models for compliance with distribution CoCons. Hence, this
section defines the artefact-type-specific semantics of the ALLOCATED TO CoCon
type for UML 1.4 models via OCL.

In UML, deployment diagrams show the configuration of software compo-
nents. Software component instances represent run-time manifestations of soft-
ware code units. A deployment diagram is a graph of nodes connected by commu-
nication associations. An arrow (= dependency) or the nesting of a component
symbol within a node symbol maps specified the deployment of a component
at a node. As illustrated in the UML deployment diagram shown in figure [3]
the component type ‘ContractManagement’ is deployed on the computer type
‘Laptop’. According to the CoCon in section ‘ContractManagement’ must
not be allocated to the ‘Laptop’ because this computer belongs to the controlling
department.

el

% Contract- ___{{u_j%ﬂl?}r}_}_% Laptop

Management

" Workflow: Integrate Two Contracts, New)
Contract, Delete Contract,
Change Contract, Create Report | [Operational Area: Controlling }

By

Figure3. A Deployment Diagram Showing a Component Type that violates
the Availability Requirement of Section [4.3

The ALLOCATED TO CoCon given in section can be translated into the
two following OCL expressions. The first OCL expression referts to component
types that are allocated to nodes via deployment associations:

context node inv:
self.taggedvalue -> select(tv | tv.dataValue =
"Controlling")
.type -> select(td | td.name = "Operational Area")
-> notEmpty()

implies self.deployedComponent
-> select(c | c.oclIsTypeOf (component))
self.taggedvalue->select(tv | tv.dataValue = "Create
Report")
.type -> select(td | td.name = "Workflow")
-> notEmpty()

This OCL statement states that a nodes having the tagged value ‘Opera-
tional Area: Controlling” must (= NotEmpty() in OCL) contain those compo-
nents having the tagged value ‘Workflow: Create Report’. This OCL expression
only addresses component types and node types. Nevertheless, distribution also
applies to component instances and node instances. The following OCL expres-
sion maps the availability policy to component instances that reside on node
instances:.
context nodeinstance inv:
self.taggedvalue -> select(tv | tv.dataValue =
"Controlling")
.type -> select(td | td.name = "Operational Area")
-> notEmpty()

implies self.resident
-> select(c | c.oclIsTypeOf (componentinstance))
self.taggedvalue->select(tv | tv.dataValue = "Create
Report")
.type -> select(td | td.name = "Workflow")
-> notEmpty ()

In case of ALLOCATED TO CoCons, the artefact-type-independent semantics
definition consists of five words: ‘x must be allocated to y’. On the contrary, the
corresponding artefact-type-specific OCL listing is about much longer because
it considers a lot more details. CCL stays on the artefact-type-independent,
abstract level. OCL, however, is too close to programming for expressing re-
quirements at this abstraction level. The effort of writing down a requirement in
the minutest details is unsuitable if the details are not important. The designer
can ignore many details by expressing the same requirement via CCL instead
of OCL. Moreover, it is easier to adapted the short artefact-type-independent
CCL expression instead of changing all the OCL expressions if the corresponding
requirement changes.

As a proof of concept implementation, the ‘CCL plugin’ for the open source
CASE tool ArgoUML has been implemented and is available for download at
ccl-plugin.berlios.de/| It integrates the verification of distribution CoCons
into the Design Critiques ([I7]) mechanism of ArgoUML. However, it only pro-

http://ccl-plugin.berlios.de/
http://ccl-plugin.berlios.de/

totypically demonstrates how to verify UML models for compliance with distri-
bution CoCons. It needs to be improved before using it in production.

7 Conclusion

This paper presents an approach for declaratively defining distribution require-
ments: context-based constraints (CoCons) define what must (not) be allocated
to what according to the current context of components and documents.

7.1 Availability versus Load Balance

This paper focuses on availability. However, availability and load balanceare con-
tradicting distribution goals. Availability is optimal if every element is allocated
to every computer, because each computer can still access each element even if
the network or other computers of the system have crashed. However, this opti-
mal availability causes bad load balance, because each modification of an element
must be replicated to every other computer of the system. Typically, the limits
of hardware performance and network bandwidth don’t allow optimal availabil-
ity. Instead, a reasonable trade of between availability and load balance must
be achieved by clustering related data. Those elements that are related should
be allocated to the computers where they are needed. This paper suggests im-
proving availabilty by grouping related objects into subject-specific clusters and
allocating or replicating the whole cluster via CoCons to the computer(s) where
it must be available.

In order to detect conflicts between availability and load balance early, the
system load should be considered already in the model. A system load estima-
tions can either be a result of approximation based on common sense and expe-
rience, of a simulation as suggested by [14], or of (maybe prototypical) runtime
metrics. Automatically detecting conflicts between system load and distribution
CoCons is a topic of future research, though.

7.2 Limitations of Distribution CoCons

The context of components or computers can be expressed via metadata. Taking
only the metadata of an element into account bears some risks. It must be
ensured that the context property values are always up-to date. The following
approaches can improve the quality of context property values:

— If the metadata is extracted newly from its element each time when checking
a context condition and if the extraction mechanism works correctly then
the metadata always is correct and up-to-date. Moreover, the extraction
mechanism ensures that metadata is available at all.

— Contradicting context property values can automatically be prevented via
value-binding CoCons as explained in [4].

— Additional Metadata can be automatically derived from already existing
metadata via belongs-to relations as explained in [4].

Within one system, only one ontology for metadata should be used. For in-
stance, the workflow ‘Create Report’ should have exactly this name in every
part of the system, even if different companies manufacture or use its parts.
Otherwise, string matching gets complex when checking a context condition. If
more than one ontology for metadata is used, correspondences between heteroge-
neous context property values can be expressed via constraint or correspondence
techniques, like value-binding CoCons ([4]) or Model Correspondence Assertions
([6]). However, not every vocabulary problem can be solved via engineering tech-
niques. These techniques can reduce the heterogeneity, but they cannot overcome
it completely. Hence, the need for a controlled ontology remains the key limita-
tion of CoCons.

7.3 Benefits of Distribution CoCons

Context properties can dynamically group elements. They facilitate handling
of overlapping or varying groups of elements that share a context even across
different element types or systems. Hence, one distribution requirements defini-
tion affecting several unrelated elements that even may not be managed by the
same platform can now be expressed via one constraint. Context properties al-
low subject-specific clusters to be concentrated on. For instance, all components
belonging to workflow ‘X’ may form a cluster. Other concepts for considering
metadata exist, but none of them writes down constrains that reflect this meta-
data.

Requirements specification should serve as a document understood by de-
signers, programmers and customers. CoCons can be specified in easily compre-
hensible, straightforward language. In complex domains, no one architect has
all the knowledge needed to control a system. Instead, most complex systems
are maintained by teams of stakeholders providing some of the necessary knowl-
edge and their own goals and priorities. This ‘thin spread of application domain
knowledge’ has been identified by [§] as a general problem in software devel-
opment. Even the person who specifies distribution requirements via CoCons
does not have to have the complete knowledge of the components and comput-
ers involved due to the indirect association of CoCons to the components and
computers involved. It can be unknown what exactly must (not) be allocated
where when writing down the distribution requirements.

Distribution requirements can change often. The key concept for improving
the adaptability of distribution requirements definition is indirection — the con-
strained elements can be indirectly selected according to their metadata. The
metadata can be easily adapted whenever the context of a component or com-
puter changes. Furthermore, each deleted, modified or additional component
or computer can be automatically considered and any resulting conflicts can
automatically be identified. CoCons automatically adapt to changed contexts,
components or computers.

References

10.

11.

12.

13.

14.

15.
16.

17.

18.

. Thomas Baker. A grammar of dublin core. D-Lib Magazine, 6(10):47-60, october

2000.

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan-
guages for distributed computing systems. ACM Computing Surveys, 21(3):261—
322, 1989.

Ulrich Becker. D?AL - a design-based distribution aspect language. Technical Re-
port TR-14-98-07 of the Friedrich-Alexander University Erlangen-Niirnberg, 1998.
Felix Biibl. The context-based constraint language CCL for components.
Technical Report 2002-20, Technical University Berlin, Germany, available at
www.CoCons.org, October 2002.

Felix Biibl. Introducing context-based constraints. In Herbert Weber and Ralf-
Detlef Kutsche, editors, Fundamental Approaches to Software Engineering (FASE
’02), Grenoble, France, volume 2306 of LNCS, pages 249-263, Berlin, April 2002.
Springer.

Susanne Busse. Modellkorrespondenzen fiir die kontinuierliche Entwicklung medi-
atorbasierter Informationssysteme. PhD Thesis, Technical University Berlin, Ger-
many, Logos Verlag, 2002.

Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering. Kluwer Academic, Boston, 2000.

Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design
process for large systems. Communications of the ACM, 31(11):1268-1287, 1988.
Nicodemos Damianou. A policy framework for management of distributed systems.
PhD Thesis, Imperial College, London, UK, 2002.

Keith Devlin. Logic and Information. Cambridge University Press, New York,
1991.

Anind K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting Journal, 5(1):4-7, 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Aksit and Satoshi Matsuoka, editors, Furopean Conference on Object-
Oriented Programming ECOOP, volume 1241 of LNCS, pages 220-242, Berlin,
1997. Springer.

Jeff Kramer and Jeff Magee. Exposing the skeleton in the coordination closet. In
Coordination 97, Berlin, pages 18-31, 1997.

Miguel de Miguel, Thomas Lambolais, Sophie Piekarec, Stéphane Betgé-Brezetz,
and Jérome Pequery. Automatic generation of simulation models for the evaluation
of performance and reliability of architectures specified in UML. In Wolfgang
Emmerich and Stefan Tai, editors, Engineering Distributed Objects (EDO 2000),
volume 1999 of LNCS, pages 82-100, Berlin, 2000. Springer.

OMG. UML specification v1.4, September 2001.

Matthias Radestock and Susan Eisenbach. Semantics of a higher-order coordina-
tion language. In Coordination 96, 1996.

Jason E. Robbins and David F. Redmiles. Software architecture critics in the argo
design environment. Knowledge-Based Systems. Special issue: The Best of 1UI’98,
5(1):47-60, 1998.

Suzanne Robertson and James Robertson. Mastering the Requirements Process.
Addison-Wesley, 1999.

http://www.cocons.org/publications/CCL_technical_report.pdf

19.

20.

21.

22.

23.

24.

Edward Sciore, Michael Siegel, and Arnon Rosenthal. Context interchange using
meta-attributes. In Proc. of the 1st International Conference on Information and
Knowledge Management, pages 377-386, 1992.

Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic values to
falilitate interoperability among heterogeneous information systems. ACM Trans-
actions on Database Systems (TODS), 19(2):254-290, 1994.

Amit P. Sheth and Sunit K. Gala. Attribute relationships: An impediment in au-
tomating schema integration. In Proc. of the Workshop on Heterogeneous Database
Systems (Chicago, Ill., USA), December 1989.

Morris Sloman and Kevin P. Twidle. Domains: A framework for structuring man-
agement policy. In Morris Sloman, editor, Chapter 16 in Network and Distributed
Systems Management, pages 433—453, 1994.

Clemens Szyperski. Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, Reading, 1997.

Nicholas Yialelis. Domain-based security for distributed object systems. PhD
Thesis, Imperial College, London, UK, 1996.

	 What Must (Not) Be Available Where?

