Tracing Crosscutting Requirements
for Component-Based Systems
via Context-Based Constraints

vorgelegt von
Diplom-Informatiker
Felix Biibl

an der Fakultat IV Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr. Ing. -

Promotionsausschuss:
Vorsitzender: Prof. Dr. Peter Pepper
Berichter: Prof. Dr. Herbert Weber
Berichter: Prof. Dr. Heinrich Hussmann

Tag der wissenschaftlichen Aussprache: 22. Juni 2005

Berlin 2005
D 83

Abstract

We often fail to keep track of requirements in complex software systems
because we cannot cope with all the details - in particular, it is expensive
to check a system for compliance with crosscutting requirements where
one requirement affects several parts of the system. In order to detect
requirement violations, each system element involved in a requirement
must be identified and checked for whether it meets the requirement.
But, it is difficult to identify which system element is involved in which
requirement in complex or frequently changing software systems. In this
thesis, I specify crosscutting requirements via constraints in order to au-
tomatically check the system for compliance and to automatically iden-
tify contradicting requirements. I present a new notion of constraints: a
context-based constraint (CoCon) expresses a condition on how its con-
strained elements must relate to each other. CoCons are adaptive in
order to cope with complex system: A CoCon can identify the system
elements affected by the requirement automatically because it can indi-
rectly select its constrained elements according to their context. Five
different CoCon families for component-based systems are discussed: Ac-
cess Permission CoCons express which components must (or must not) be
accessible to which other components. Communication CoCons control
whether a method call between components must be (or must not be)
intercepted. Distribution CoCons express which components must (or
must not) be allocated to which computers. Information-Need CoCons
express which users must (or must not) be notified of which documents.
Finally, Inter-Value CoCons express whether an element in a certain con-
text must (or must not) reside in another context. This thesis focuses on
applying CoCons in UML models of component-based systems.

I present algorithms for detecting both violated and contradicting Co-
Cons automatically. Inter-CoCon conflicts can even be detected if the
precise semantics of the checked system artefact are unknown. Moreover,
CoCons support the design of software systems from the start of the de-
velopment process. In contrast to OCL constraints, CoCons specified
during modelling can already be checked during modelling at the same
metalevel. Hence, the model can be checked for violated or contradicting
CoCons already during modelling.

CoCons enable us to handle crosscutting requirements for possibly large,
overlapping and dynamically changing sets of system elements - even
across different artefact types or platforms. Writing down a requirement
directly for each individual element involved in each system artefact is
expensive in complex systems. Instead, a CoCon automatically constrains
those elements whose context properties match with the CoCon’s context
condition. Hence, CoCons facilitate checking large-scale or frequently
changing systems for compliance with crosscutting requirements during
(re-)design, during (re-)configuration, and at runtime.

Zusammenfassung

Bei der Anpassung eines Softwaresystems an neue Anforderungen sollten
bestehende Anforderungen nicht versehentlich verletzt werden. Bei kom-
plexen oder sich haufig &ndernden Systemen verlieren wir jedoch leicht
den Uberblick dariiber, welches Systemelement welche Anforderung um-
setzt. Besonders uniibersichtlich ist die Handhabung von Querschnittsan-
forderungen, bei denen mehr als ein Systemelement von einer Anforderung
betroffen ist.

Diese Dissertation schligt eine neue Art von Constraints vor, um Quer-
schnittsanforderungen (engl: Crosscutting Concerns) ausdriicken und ihre
Einhaltung iiberwachen zu koénnen: ein Context-Based Constraint (Co-
Con) kann die betroffenen Elemente des Systems anhand ihrers Kon-
textes erkennen. Die hier definierte Context-Based Constraint Language
CCL besteht aus 22 verschiedenen Arten von CoCons zur Beschreibung
von Anforderungen an komponenten-basierte Systeme in folgenden Bere-
ichen: Access Permission CoCons beschreiben, wer auf was (nicht) zu-
greifen darf. Distribution CoCons legen fest, welche Komponenten (nicht)
auf welchen Rechnern verfiigbar sind. Information Need CoCons spezi-
fizieren, wer tiber was (nicht) informiert wird. Communication CoCons
beschreiben, auf welche weise Aufrufe zwischen Komponenten (nicht) er-
folgen. Und schlieSlich definieren Inter-Value CoCons Abhéngigkeiten
zwischen den Context Property Werten eines Elements.

Im Rahmen einer Softwareentwicklung entstehen verschiedene Artefakt,
wie etwa Modelle, Source Code oder Laufzeitkomponenten. CoCons
formulieren abstrakte Anforderungen unabhéngig von Artefakt-Typen.
Daher erméglichen es CoCons, Softwaresysteme sowohl wéhrend ihrer
Modellierung, wéhrend ihrer Konfiguration als auch zur Laufzeit auf
die Einhaltung von Anforderungen zu iiberwachen. Diese Dissertation
beschrankt sich auf die Anwendung von CoCons wéhrend der Model-
lierung mit UML.

Algorithmen zum FEntdecken von verletzten oder widersprchlichen Co-
COns werden vorgestellt. Anders als bei OCL Constraints kann ein Mod-
ell auf die Einhaltung von CoCon iiberwacht werden, ohne das im Modell
spezifizierte System zu starten oder zu simulieren. Daher knnen mit Co-
Cons schon frh im Entwicklungsprozess Systeme auf die Einhaltung von
Querschnittsanforderungen geprft werden.

Bisherige Constraints werden direkt an die betroffenen Element annotiert.
Es ist aufwendig, eine viele Elemente betreffende Querschnittsanforderung
an jeder zugehorigen Stelle zu annotieren. Im Gegensatz dazu werden die
von einem CoCon betroffenen Elemente indirekt anhand ihrer Context
Properties identifiziert. Dadurch kann ein CoCon eine Anforderungen fiir
moglicherweise zahlreiche, sich hdufig verandernde Elemente beschreiben
- sogar iiber Plattform- oder Modellgrenzen hinweg. Daher eignen sich
CoCons insbesondere dafiir, groSe oder sich héufig dndernde Systeme
wahrend der Modellierung, der Konfiguration oder zur Laufzeit auf die
Einhaltung von Anforderungen zu iiberwachen.

Acknowledgments

First of all I thank my two supervisors for their support and advice dur-
ing the preparation of this thesis: Heinrich Hussmann particularly im-
proved my work through numerous valuable comments on technical and
structural issues that were crucial for editing the drafts into the final
dissertation. Herbert Weber supported my research by employing me. I
always enjoyed the lively and controversial discussions with my colleagues
at the Technical University of Berlin. Martin Grosse-Rhodes insightful
comments on formalization and presentation helped me in improving the
text’s maturity a lot. Ralf-Detlef Kutsche gave me academic guidance
and many thought-provoking conversations that helped me a great deal.
Without Andreas Leicher there would not be a dissertation, only a collec-
tion of ideas. From the start on, he became my bug exorcist who identified
missing, superfluous or wrong details. Moreover, he helped me in develop-
ing two proof of concept tools. Markus Schaal assisted me in formalizing
my concepts from the start on when my ideas were still fuzzy. The dis-
cussions and publications with Michael Balser, Susanne Busse, Thomas
Kabisch, Ulrich E. Kriegel, and Thomas Off inspired and encouraged me.
By coaching my diploma thesis, Jiirgen Oheim helped me entering the
scientific community. Barbara Petkus and Valerie Adelsberger not only
proofread multiple versions of my texts, but also provided many stylistic
suggestions that improved my presentation and clarified my arguments.

Among the many the students working on the CCL-plugin for the case
tool ArgoUML, especially Martin Skinner, Marek Feldo, Ute von Angern,
Camara Lenuseni, and Priscilla-Mumene Nkweti put much effort in get-
ting it up and running when writing their diploma thesises. Likewise, the
EJBcomplex framework developed in the diploma thesises of Alexander
Bilke and Jianxin Wang helped me to improve my concept. As well, both
Frank Ratzlow work on aspect-oriented approaches and Joseph Bauer me-
thodical discussions helped me improving my thesis.

Contents

11 Background | 10
|1.1 Component-Based Software Engineeringl 10
1.2 The Unified Modelling Language UML| 11
I1.3 Requirements Engineering | 12
I1.4 The Object Constraint Language OCL| 14

2__Outline of this Thesis | 16
2.1 Motivation: Adapting Complex Systems to New Require- |

L ments] . - v oo e e e 16
2.2 The Running Example: A Privacy Policy | 17
........................... 17
2.4 Structure of this Thesisl 19

|3 Context-Based Constraints (CoCons)| 21
BI_Overviewl o oo oo 21
3.2 Introducing Context Properties| 22

.21 Whatis Context?] 22

13.2.2 Context Properties: Formatted Metadata Describ- |

| ing Blements|. 24
3.2.3 Context Property Examples| 25

13.2.4 Formal Definition of Context Properties|. 26

[3.2.5 Useful Context Property (Stereo-)Types| 27

3.2.6 Research Related To Context Properties| 28

[3.3 Introducing Context-Based Constraints (CoCons)|. . . . 30
3.3.1 Intuitive Definition of Context-Based Constraintsl 30

8.3.2 The Common CoCon Syntax| 33

13.3.3 The Context Property Query Language CPQL | 35

13.3.4 Navigation via Dot-Path-Notation| 38

8.3.5 Two-Step Approach for Defining CoCon-Predicate |

[Semantics|o oo 39
[3.3.6 Formalization of Context-Based Constraintsl . . . 40

8.3.7 Formalization of CPQL| 43

8.3.8 Comparing Context-Based Constraints with As- |

| pects|o 43

Contents

13.3.9 Research Related to Context-Based Constraints .

46

13.3.10 The Fundamental Things Apply As Time Goes By| 48

13-4 Turning CoCons into CoCon-Rules by Adding Events And |

[Actionsl 49
[3.4.1 Introduction to Business Rules and Policies|. 49

T — 49

13.4.3 Limitations of Enriching CoCons with Actions and |

[Events|o 50
3-4.4 Referring to Events and Actions in CoCon-Rules| 51

3-4.5 The Common CoCon-Rule Syntax|. 51

4 Applying CoCons in Continuous Software Engineering | 53
4.1 Continuous Requirements Tracing| 53
4.2 Detect CoCon Violations 55
4.2, CoCon-Violation Conflicts|. 55

4.2.2 The Detect-CoCon-Violations Algorithm |. 56

4.3 Detect Contradicting CoCons | 57
4.3.1 Inter-CoCon Conflicts|. 57

4.3.2 The Detect-Inter-CoCon-Conftlicts Algorithms|. . 60

4.4 Prootf-ot-Concept Tools|. 62
4.5 Maintaining Context Property Values| 62
4.5.1 Type-Instance Constraint On Context Property |

L Values| oo 63
4.5.2 Dependent Context Property Values| 64

4.5.3 Belongs-To Relations Result in Derived Context |

[Properties Values| 66
4.5.4 Outlook: Applying Context Properties in Contin- |

| uous Software Engineering | 69
[The Context-Based Constraint Language CCL | 71
Ll Overviewon CCIl 71
0.2 Access Permission CoCons|. 71
5.2.1 The Notion of Access Permission CoCons | 71

b.2.2 Access Permission CoCon-predicates|. 71

5.2.3 Detectable Inter-CoCon Conflicts of Access Per- |

| mission CoConsl.o 72
5.2.4 Example for Using Access Permission CoCons| . . 72

0.2.5 Related Research on Access Control Policies]. 72

) o0Cons|o oo 73

10.3.1 The Notion of Communication CoCons|. 74

Contents 7

b.3.2 The Communication CoCon-predicates|. 74

[tion CoCongl oL 74
b.3.4 Examples for Using Communication CoCons|. . . 75

5 — 75

B4 Distribution CoCons| 75
.41 The Notion of Distribution CoCons|. 75

5.4.2 Distribution CoCon-predicates| 76

L CoConsl 76
b.4.4 Examples for Using Distribution CoCons|. 77

[ced ..o oo "
- c0Cong . ..o 78

2.5.1 The Notion of Information-Need CoCons|. 78

5.5.2 The Information-Need CoCon-predicates|. 78

[Need CoConsl oo L. 79
b.5.4 Examples for Using Information-Need CoCons| . . 80

5.5.5 Related Research on Information-Need CoCons| . 81

- JoCon-Rules] 82

b6 Inter-Value CoConsgl 83
5.6.1 The Notion of Inter-Valne CoCons| 83

0.6.2 The Inter-Value CoCon-predicates| 83

[CoConslo 84
b.6.4 Examples for Using Inter-Value CoCons|. 85

- JoCond 85

6 UML-Specific Semantics of CCL | 87
6.1 Integrating CoCons into UML|. 87
6.1.1 The Easy Part: Using UML’s Constraints and Tagged |

[Values| o 87
[Point Cutsl oo 88
6.2 Comparing Context-Based Constraints with OCL| 89
[6.2.1 TUMI Semantics of ACCESSTBLE T0 CoCong 89

6.2.2 CoCons can be Verified Already at the Same Meta- |

L Level | . . . oo o oo 91

.00 2 .. 92

Contents 8
|7 The CCL Analysis & Specification Method CCLM | 93
[(.1___Overviewon CCLM| 93
[7.1.1 Background: Adopting Kotonya’s and Sommervilles’s |

| Requirements Engineering Process|. 93
[7.1.2 Introducing the 11 Activities during the CCLM |

L Process|.o 95
[7.1.3 Preamble: Why to Apply CCL at all?] 97

7.2 The Requirements Elicitation Phase of CCLM|. 98
[7.2.1 Rules-Driven or Context-Driven Requirements Elic- |

[itation |o oo 98
722 How to Write Down Informal CoCon-Rules 99

[7.2.3 Rule-Driven CoCon Family Identification | 101

[Rules| oo oo oo 101
[7.2.5 Rules-Driven Elicitation of Relevant Context Prop- |

[erty Candidates |o 104
| Properties| oL 104
[0.2.7 Context-Driven Elicitation of Relevant Informal |

| CoCon-Ruleg 105
[7.2.8 Context-Driven CoCon Family Identification |. . . 106

7.3 The Requirements Negotiation Phase of CCLM| 108
7.4 The CCL Specification Phase of CCLM| 109
[7.4.1 Context Property Application| 109

[7.4.2 CCL Specification| 111

C COLME. o oo 112

B Conclusion| 114
8 UWINMATY] - .« v v v o v e e e e e e e e e e 114
8.2 Future Research Recommendations| 115
8.3 Timitations of CoCons| 116
8.4 Benefits of CoCons| 117

A~ The Textual Syntax of CCL | 119
IB Translating Accessability CoCons into OCL | 121
Bl _Overview|. 121
IB.2 Artefact-Specific Semantics for UML| 124
IB.3" The Privacy Policy in OCL| 131

135

List of Figures

2.1 Towards Loosely Coupled Software Systems|. 17
3.1 Graphical Notation tor Context Properties| 25
8.2 The CoCon Metamodel | 31
3.3 A CoCon Relates any Element of the “Target Set’” with any |

| Element of the ‘Scope Set” | 31
3.4 The Replaceable Conceptual Modules of CoCons|. 33
13.5 T'wo-Step Approach for Defining the Semantics of CoCon- |

| Predicates| L 39
4.1 Excerpt of a Call Graph Depicting Dependencies Between |

| 15 Classes | o 54
4.2 Context Property Values Can Depend On The Current |

| Configuration | 66
6.1 A Point Cut indirectly associates a Constraint with its |

[Constrained Elements | 87
6.2 The Component ‘A’ is Not Allowed to Access the Compo- |

| nent ‘B'1. 89
[7.1 Overview on the Four Phases of CCLM for Identitying |

[Context-Based Business Rules] 94
AVAl Al ArAl 95

[.3 _CCLM consists of 1T Activities]. 96
[7.4 The WinWin Negotiation Model | 108
[B.1 A Component Diagram Showing Component T'ypes that |

| violate the ‘Privacy Policy’ CoCon|. 121
IB.2 UML 2.0 Metaclasses For Component Types in Compo- |

| nent Diagrams| oo oL 122
IB.3 Metaclass Component with a Virtual OCL Operation | . . 123

1. Background

Quick Tour 99%¢ Section

This chapter explains well-known technical terms used in this thesis.
First, component-based software systems are described in section [1.1
Afterwards, requirements engineering is outlined in section [[.3] Next,
the Unified Modelling Language UML is sketched in section [[.2} Finally,
the Object Constraint Language OCL is explained in section [T.4}

In this document, new terms are highlighted boldly where they are
explained.

Experienced readers who already know the basic terms of components,
requirements engineering and UML can skip the next pages and continue
in chapter|2.4/on page where the contribution of this thesis is outlined.

1.1 Component-Based Software Engineering

Many Definitions

[Szyperski]

[Bachman]

According to [Som92], the specification, development, management and
evolution of software systems makes up the discipline of software en-
gineering. In traditional software engineering, a software system is de-
veloped as one monolithic block. Component-based software engineer-
ing replaces this monolithic approach with assembling software systems
from software components. This thesis focuses on component-based soft-
ware systems. The basic terms of component-based software engineering
are explained next. More details are, e.g., provided in [CHJK02| [Pal02,
SP96]. Many different definitions of the term component exist in soft-
ware engineering. The approach presented in this thesis does not stick to
one of them. Instead, it can be adapted to each definition of component
as discussed in section Some popular definitions are discussed next:

“A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependen-
cies only. A software component can be deployed indepen-
dently and is subject to composition by third parties ” ([SP96])

“A component is a software implementation that can be
executed on a physical or logical device. A component im-
plements one or more interfaces that are imposed upon it.
This reflects that the component satisfies certain obligations,
described as a contract. These contractual obligations en-
sure that independently developed components obey certain
rules so that components interact (or can not interact) in pre-
dictable ways, and can be deployed into standard build-time
and run-time environments.” (|[BBB*00])

Both Bachman and Szyperski consider the interfaces as contracts be-
tween the components. Interfaces are a key aspect of components. An
interface defines how to interact with a component, but hides the under-
lying implementation details. The more we know about a component’s
interfaces, the better we can handle this component. A component speci-
fication should assist clients and designers in understanding what services
are offered by the component, and allow them to match the component’s
capabilities to their specific needs.

10

1 Background

11

Focus: Design

There are a number of component specification techniques ranging from
formal (using mathematical notations) to non-formal (using a natural
language description). However, there is no standard method for spec-
ifying components. This thesis focuses on designing component-based
systems via the standard modelling language UML, which is outlined in
the next section.

1.2 The Unified Modelling Language UML

Modelling

Development ‘Level’

UML

UML Components

UML Metamodel

As a result of software engineering activities, artefacts are created. For
example, source code, configuration files, or models are artefacts created
when developing a software system. Modelling is the designing of soft-
ware applications before coding. A model plays the analogous role in
software development that blueprints and other plans play in the building
of houses. Many languages for modelling software systems exist. This
section outlines the basic features of the currently most popular modelling
language.

The distinction of the software development process into different phases
is outdated. On the contrary, incremental and iterative software develop-
ment approaches switch between analysis level, design level, implemen-
tation level and runtime level during each iteration. Therefore, the term
‘design phase’ is not used here. Instead, the terms ‘during modelling’ or
‘at modelling level’ or ‘in the model’” are used.

The Unified Modelling Language (UML) has emerged as the soft-
ware industry’s dominant language for modelling object-oriented software
systems. UML consists of twelve diagram types that assist developers
in specifying, visualizing, and documenting models of software systems.
Different versions of UML exist. Currently, some UML tools support
version 1.3, some 1.4 and some 2.0. The Object Management Group
(OMG) adopted UML as its standard modelling language. The OMG is
a consortium that produces and maintains computer industry specifica-
tions for interoperable enterprise applications. It is proposing the UML
specification for international standardization.

The UML became the modelling standard for modelling object-oriented
software systems just at the time that components were starting to move
into the mainstream. It supports components as implementation concepts
but provides no explicit support for other aspects of their specification.
Hence, a number of UML enhancements for modelling component-based
systems have been proposed. This thesis sticks to the ‘UML components’
approach introduced in [CD00]. The UML components approach, how-
ever, ignores the composition of components as the method of assembling
software components to composed software systems. Therefore, compo-
sition is additionally addressed in the relevant sections of this thesis.

A UML diagram contains symbols. For example, a class diagram can
contain rectangle symbols that represent classes. In order to understand
UML diagrams, the semantics of each symbol must be defined. A meta-
model is a precise definition of the constructs and rules needed for cre-
ating semantic models. For example, it defines the semantics of rectangle
symbols that represent classes. The UML metamodel defines the mean-
ing of each UML symbol - it exactly describes the concepts covered in
UML.

The UML metamodel definition consists of text and diagrams. The dia-
grams used to define UML concepts are UML diagrams themselves. To

1 Background

12

1.3

UML architecture

[Zave]

[IEEE]

illustrate this dichotomy closer, consider the following analogy: A book
describing the grammar of the English language can be written in En-
glish. In this case, it would be describing valid constructs of the English
language and the semantics of these constructs, while using the same
language, it is describing to convey the description.

According to [OMGO3D], the UML metamodel is defined as one of the
layers of a four-layer metamodeling architecture:

Layer Scope Defines Sample con-
stituents
Meta- The infras- | Defines the lan- | MetaClass,
Metamodel | tructure for a | guage for spec- | MetaAttribute,
metamodeling ifying metamod- | MetaOperation
architecture els.
Metamodel | An instance of a | The UML meta- | Class, Attri-
metametamodel. | model specifies | bute, Operation,
the semantic of | Component
the UML model
elements
Model An instance of a | Defines a lan- | LinkedList,
metamodel. guage to describe | currentState,
an information | setValue()
domain.
Objects or | An instance of a | Defines a specific | [Person: name
Data model at runtime | information do- | = Rolf, height
main = 183], 45.1,
"hello”

The difference between metamodel and model is more closely discussed
in chapter [6]

Requirements Engineering

Pamela Zave provides the following definition of requirements engineering
in [Zav97]:

“Requirements engineering is the branch of software en-
gineering concerned with the real-world goals for, functions
of, and constraints on software systems. It is also concerned
with the relationship of these factors to precise specifications
of software behaviour, and to their evolution over time and
across software families.”

This definition is attractive for a number of reasons. First, it highlights
the importance of ‘real-world goals’ that motivate the development of a
software system. These represent the ‘why’ as well as the ‘what’ of a
system. Second, it refers to ‘precise specifications’. These provide the
basis for analysing requirements, validating that they are indeed what
stakeholders want, defining what designers have to build, and verifying
that they have done so correctly upon delivery. Finally, the definition
refers to ‘evolution over time and across software families‘, emphasising
the reality of a changing world and the need to reuse partial specifications,
as engineers often do in other branches of engineering.

In [oEE90Q], the IEEE defines a requirement as:

1. A condition or capability needed by a user to solve a problem or
achieve an objective.

1 Background

13

Better Fix Errors Early

Crosscutting Requirements

Requirements Engineering
Process

Traceability

2. A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification,
or other formally imposed document.

3. A documented representation of a condition or capability as in (1)
or (2)

Produced by Software Engineering Institute (SEI), the CHAOS report
([SG93]) reveals the following figure based on the investigation of over
7500 IT projects: 73 percent of projects are cancelled or fail to meet
expectations due to poor requirements definition and analysis. Other
studies, e.g. [Dav90], result in similar figures: the cost of correcting an
error increases by an order of magnitude in later development stages.
Hence, errors should be identified and fixed early.

Typically, two classes of requirements are distinguished: functional re-
quirements specify a function that the software system must be ca-
pable of performing . On the contrary, non-functional requirements
describe issues such as performance, reliability, efficiency, usability, porta-
bility, testability, understandability or modifiability. Non-functional re-
quirements tend to be crosscutting. A crosscutting requirement violates
the separation-of-concerns paradigm: it is not possible to handle this re-
quirement at only one single, encapsulated place in the system. Instead,
it involves more than one system element.

According to [KS9§|, the requirements engineering process includes the
following activities:

e Requirements Elicitation is the activity during which software
requirements are discovered, articulated, and revealed from stake-
holders or derived from system requirements. Sources may be sys-
tem requirements documentation, customers, end-users, and do-
main specialists or market analysis.

¢ Requirements Analysis and Negotiation is the activity during
which the requirements gathered during elicitation are analysed for
conflicts, ambiguity, inconsistencies, missing requirements or extra
requirements. During this activity, negotiation between all stake-
holders occurs to arrive at a set of agreed upon requirements.

e Requirements Specification is the activity during which the re-
quirements are recorded in one or more forms, usually in a software
requirements specification document. The requirements may be in
natural language, a formal language or in a graphical form. The
specification is used to communicate the requirements to customers,
end-users, managers, designers, and system developers.

e Requirements Validation is the activity during which the re-
quirements are checked for omitted, extra, wrong, ambiguous and
inconsistent requirements This activity also checks to ensure that
all requirements follow stated quality standards.

Traceability is defined in [RJ0I] as the ability to discover the history of
every feature of a system. It determines how easy it is to read, navigate,
query and change requirements documentation. Gotel defines require-
ments traceability in [GF94] as ‘the ability to describe and follow the
life of a requirement in both forwards and backwards direction (i.e., from
its origins, through its development and specification, to its subsequent
deployment and use, and through all periods of on-going refinement and
iteration in any of these phases)’. Providing traceability in requirements

1 Background

14

Maintainability

Software Evolution

documentation is a means of achieving integrity and completeness of that
documentation, and has an important role to play in managing change.

As summarized in [NEQOQ], it has long since been established that require-
ments management needs to be done throughout a system’s lifetime. A
large number of definitions of qualities exist that are related to the abil-
ity of a software system to be modified. An early definition is given in
[MRWT77): Maintainability is the effort required to locate and fix an
error in an operational program. Flexibility is the effort required to mod-
ify an operational program. A more recent classification of qualities is
given in the ISO 9126 standard ([ISO00]): maintainability is the capa-
bility of the software product to be modified. Modifications may include
corrections, improvements or adaptations of the software to changes in
environment, and in requirements and functional specification. Although
different in wording, the definitions are almost identical in their seman-
tics.

Software evolution is frequently used as another expression for soft-
ware maintenance. According to [Ste0l], a common interpretation of
software maintenance used is to span the phase after first delivery of a
product. The split into a development phase and a maintenance phase
is problematic. It derives from the waterfall model described in [Som92].
In contrary to development processes in other disciplines of engineer-
ing, modern software development processes do not pass through these
phases sequentially one after the other. Instead, the need to validate re-
quirements and design forces a development team to incrementally pass
through these phases over and over again. It has become evident that
the development phase and the maintenance phase cannot be clearly sep-
arated. Development always incorporates also maintenance since a soft-
ware system will never be mature after first delivery. A running system,
on the other hand, will always have to be developed further to cope with
changing requirements. The term software evolution incorporates both
the software development and maintenance process in one expression.

1.4 The Object Constraint Language OCL

Recording Requirements

Constraint

In complex applications, even experienced architects need tool support
for designing and maintaining the system. For instance, they need to
be reminded which of the requirements apply to which parts of the sys-
tem. A prerequisite for keeping track of the requirements is writing them
down. Using natural language for requirements specification introduces
freedom of misinterpretations and gives tools no chance to cope with
it. On the contrary, formal languages have precise semantics and can
automatically be parsed by software tools. However, the language for
expressing requirements must be comprehensible for designers, program-
mers and customers.

Software evolution is a major challenge to software development. When
adapting a system to new, altered, or deleted requirements, existing re-
quirements should not unintentionally be violated. By specifying a re-
quirement as an invariant, it can be considered and protected in later
modifications. Typically, UML invariants are specified via the Object
Constraint Language OCL outlined next.

According to [WK99], a constraint is a restriction on none or more val-
ues of (part of) an object-oriented model or system. In UML (JOMGO03b]),
a constraint is a semantic condition or restriction expressed which must

1 Background

15

OCL

Origins

be true for the model to be well formed. Constraints can be expressed
in a language specially designed for writing constraints, a programming
language, mathematical notation, or natural language.

According to |[CKM™99al [WK99, [OMGO3b], the Object Constraint
Language (OCL) is a textual specification language, designed especially
for the use in diagrammatic specification languages such as the UML.
When regarding the UML diagrams as a language, it turns out that
the diagram-based UML is limited in its expressiveness. OCL is deeply
connected to UML diagrams, and can define textual constraints for UML
model elements.

OCL is a specification language that tries to mediate between the prac-
tical users needs and the theoretical work that has been done in that
area. In particular, much of the theoretical work was done in the areas
of algebraic specification languages, such as SPECTRUM [BEG™93|, ACT
ONE/TWO [EM90], or TROLL (light) [CGH92], model based specifica-
tion techniques, such as Z [Spi88], and also data base query languages,
such as SQL. The key ideas from these areas, such as navigation expres-
sions or container types as abstract data types, have been taken and com-
bined into a language that became part of the UML standard. According
to [Rum98], several degrees of formality of a notation exist. OCL does
currently not have a formally defined meaning and can therefore only be
regarded as semi-formal. Due to the tight connection of OCL with the
UML diagrams, the definition of a formal syntax for OCL must be based
on a formal semantics for the UML.

2. Outline of this Thesis

Structure of this Chapter After explaining important software engineering problems in section [2.1
and giving a short example in section section [2.3] outlines how I
propose to solve these problems in this thesis.

2.1 Motivation: Adapting Complex Systems to New Requirements

Even in simple systems, compliance with the requirements isn’t achieved
easily because each part of the system must be checked if it complies
with the requirements. Validating compliance with the requirements be-
comes even more expensive if the system artefacts or the requirements
are changed often because a lot of details must be checked often here.
Every new, removed, or changed part of the system must be checked
for compliance with every existing requirement. Modern software tech-
nologies increase this problem because they allow us to develop quickly
changeable software systems as depicted in figure batch data trans-
fers have traditionally been accomplished through nightly magnetic tape
inputs in the seventies. Recently, replaceable components have been used
to provide a service-oriented interface to external systems. Nowadays,
business-to-business web transactions are becoming loosely coupled ac-
cording to [SvdH02]. Web services, message brokers, grid computing,
or peer-to-peer networks are emerging communication technologies that
facilitate the development of loosely coupled, large-scale software sys-
tems handling frequently changing data, consisting of frequently chang-
ing components deployed on frequently changing computers in frequently
changing contexts. We often fail to keep track of requirements in such
loosely coupled, complex software system because we cannot cope with
all the quickly changing details.

A crosscutting requirement is a requirement that affects more than one
system element. Requirements tend to change often. It is especially
difficult to adapt complex systems to changes of crosscutting require-
ments because each modification must consider which of the frequently
changing data or which of the frequently changing components deployed
on frequently changing computers in frequently changing contexts are
affected by which requirements. In this thesis, I focus on crosscutting
requirements because we don’t have a satisfying way to deal with them
yet. Instead, we often fail to keep track of crosscutting requirements.

No single person has all the knowledge needed to design and maintain a
complex system in every detail. Instead, teams of stakeholders provid-
ing some of the necessary knowledge and their own goals and priorities
develop most complex systems. This ‘thin spread of application domain
knowledge’ has been identified in [CKIS8] as a general problem in soft-
ware development. It impedes requirements validation because we can-
not check the system without knowing which requirement affects with
part(s) of the system. Typically, we try validating complex or frequently
changing systems via automated tests: we write additional software that
automatically checks the system for compliance with the requirements.
But, each automated test can become outdated with every changed re-
quirement, system element, or context. If we do not precisely know which

16

2 Outline of this Thesis 17
Low
Coupling
5
Tight §
Coupling o
High s
Low Complexity Phase 5: oy
Complexity]
Phase4: | Agentified g
Dynamically s
J— Phase 3: Workflow Collaborating
- Phase 2: Driven Business
Phase I: Tightly Loosely Objects
Point-to-Point Coupled Coupled
Batch Interfaces of Web Static
Transfer Components | Transactions Systems
1970 1975 1990 2002 ??? >

Figure 2.1: Towards Loosely Coupled Software Systems

software tests must be adapted to which change then the automated tests
can become unreliable. We cannot write or adapt an automated test if
we don’t know exactly which system elements must be checked for what.
Hence, we often fail to keep track of requirements because we don’t un-
derstand all the details needed to check a requirement. In this thesis, I
present an approach that enables us to automatically detect violated or
contradicting requirements even if the people who write down the require-
ments do not know in particular which system element will be checked
for what.

2.2 The Running Example: A Privacy Policy

2.3 Objectives

The following privacy policy is used as an example for crosscutting re-
quirements throughout the thesis:

All components handling personal data must be inacces-
sible to all components used in the workflow ‘Create Report’
because a report created in this workflow must not contain
personal data.

How can the system be checked for compliance with this privacy policy?
Which of the frequently changing elements of which frequently changing
system artefact in which frequently changing contexts are affected by
this requirement? For instance, which model element(s) of which UML
diagram should be checked for what? How can we keep track of this
requirement in loosely coupled, complex and quickly changing software
systems in which no one understands all the details needed to check each
requirement? The answer starts in the next section.

This section describes the objectives of my approach. The next section
will sketch the solutions I propose to meet these objectives.

2 QOutline of this Thesis

18

Goal: Adaptive Approach

Goal: Independent of
Artefact Types

Goal: Detect Violated or
Contradicting Requirements

One crosscutting requirement affects many system elements. Writing
down one requirement directly for each individual element involved is ex-
pensive if the involved elements change frequently or if many elements are
involved in the requirement. It is expensive to check all elements involved
whether to adapt them each time the requirement changes. Moreover, it
is expensive to check the system if the changed requirement newly ap-
plies to any other elements that were previously not involved in it. Even
if the requirement itself does not change but any other system artefact
elements shall be modified, it is expensive to check each new or modified
element which other requirements apply to it. Furthermore, the system
gets less comprehensible if the same crosscutting requirement is specified
at every affected place. Redundancy causes information overload and can
result in inconsistency. Hence, I propose that one requirement expression
should address all of the elements involved, and this description should be
adaptive: it should allow for automatic identification of all the system
elements involved in the requirement. Large-scale or frequently changing
systems can be more easily checked for compliance with adaptive require-
ments specification because the elements involved in a requirement can
automatically be determined. For example, the privacy policy should be
expressed in a way that enables software tools to automatically identify
all constrained elements: the adaptive specification should enable soft-
ware tools to identify those components that handle personal data and
those components used in the workflow ‘Create Report’ automatically.

In a system model, one crosscutting requirement affects several model
elements that may not be associated with each other or may even belong
to different models. In source code files, one crosscutting requirement is
reflected in many different lines of code. Likewise, one crosscutting re-
quirement can affect several places in configuration files. At runtime, one
crosscutting requirement can affect several binary components that may
not invoke each other or may even run on different platforms. In my opin-
ion, it takes too much effort if the same crosscutting requirement must be
stated newly for each software system artefact. Furthermore, the effort of
writing down the requirement in the minutest artefact-specific details is
unsuitable if these details are not important. I also want to avoid address-
ing all the artefact-specific details because they might reduce the com-
prehensibility of the requirement expression. Instead, I propose that a
requirement expression should be independent of the modelling language,
the programming language, or the middleware platform, in order to apply
the same requirement expression to all these artefact types. Moreover,
it doesn’t have to be re-written if a different artefact type (or version) is
used. For example, the privacy policy (see section should be written
down only once in an abstract, artefact-type-independent manner that
can be reflected in each software system artefact at each affected place.

Violated or contradicting requirements should be detected as soon as pos-
sible during the software development process. I propose a requirement
specification technique that enable tools to find both contradicting and
violated requirements automatically. In order to reach this goal, algo-
rithms for detecting violated or contradicting requirements are needed.
For example, these algorithms should detect any artefact element that vi-
olates the privacy policy, and they should detect which other requirement
contradicts the privacy policy.

2 QOutline of this Thesis

19

2.4 Structure of this Thesis

CoCons

Applying CoCons

Which Requirements?

This section outlines the contribution of this thesis by sketching its chap-
ters. The first chapter has explained the basic terms of components,
UML, and requirements engineering. This second chapter has explained
important software engineering problems in section [2.1] gave a short ex-
ample in section [2.2] now outlines how I propose solving these problems
in this thesis.

In chapter [3] I will introduce a new requirements specification technique
called context-based constraints (CoCons). Their basic idea can be ex-
plained in just a few sentences:

1. Metadata is defined as ‘data about data’ in [Pic00]. I suggest anno-
tating the system artefact elements with formatted metadata called
‘context properties’. A context property describes its element’s con-
text. As discussed in section [3.2] context is any information that
can be used to characterize the situation of an element.

2. A CoCon is a constraint that expresses a condition on how system
elements must (or must not) relate to each other. For instance,
a CoCon can express the privacy policy in section 2.2] as the con-
dition that certain elements must be inaccessible to certain other
elements. It can select its constrained elements via their context
properties: only those elements whose context property values fit
the CoCon’s ‘context condition’ must fulfil the constraint. Section
[3-3] will explain this new concept in detail.

In chapter [4 I will discuss how to use CoCons after they have been writ-
ten down. First, section [4.1| will explain why to consider requirements
as invariants in system modifications: when adapting a system to new,
altered, or deleted requirements, existing requirements should not unin-
tentionally be violated. Afterwards, two algorithms for detecting violated
or contradicting CoCons will be presented. Section [£:2] will explain how
to detect if an artefact element does not comply with a CoCon’s condition
on how it must (or must not) relate to another artefact element. After-
wards, section will examine how to detect if one CoCon contradicts
another CoCon. Finally, section [£.5] will introduce concepts for maintain-
ing context property values in system modifications because violated or
contradicting CoCons cannot be detected at all if they refer to wrong,
outdated, or missing context property values.

In chapter I will suggest 22 different types of CoCons that define
different requirements for component-based systems. They are grouped
into five families:

e Access Permission CoCons express which components must (or must
not) be accessible to which other components as discussed in section
0.2

e Communication CoCons control whether a method call between
components must be (or must not be) handled as examined in sec-

tion 531

e Distribution CoCons express which components must (or must not)
be allocated to which computers as shown in section [5.4]

e Information-Need CoCons express which users must (or must not)
be notified of which documents at runtime as described in section
159!

2 QOutline of this Thesis

20

Checking UML Models

Methodical Guidance

Conclusion

e Inter-Value CoCons express whether elements in a certain context
must (or must not) reside in another context as explained in section
0.0l

In chapter [] T will demonstrate how to check a UML model for com-
pliance with the CoCon-predicates proposed in chapter [5l First, section
will explain how to integrate the CoCons of chapter [5|into the UML
metamodel because the notion of CoCons is not part of the UML yet.
Then, section will compare CoCons with the UML’s standard con-
straint language OCL. This comparison will reveal why CoCons are a
new concept in detail.

In chapter [7] I will propose a method for identifying and applying Co-
Cons during requirements analysis. First, section will describe how
to discover contexts and business rules during requirements elicitation.
Afterwards, section [7.3] will explain how to negotiate the CoCons dis-
covered during requirements elicitation with all stakeholders in order to
arrive at a set of agreed upon requirements. Next, section[7.4will provide
assistance in specifying the agreed upon CoCons formally. Finally,
suggests how to check the specification for omitted, wrong, ambiguous
and inconsistent parts.

To conclude, I will summarize the limitations and benefits of the pre-
sented approach in chapter [8] But first, we start with its introduction in
the next chapter.

3. Context-Based Constraints (CoCons)

3.1 Overview

Keep It Simple

Syntax & Semantics

Degree of Formality

Artefact-Type-Independent

Structure of this Chapter

Requirements engineering is not only a process of discovering and speci-
fying requirements, it is also a process of facilitating effective communi-
cation of these requirements among different stakeholders. The way in
which requirements are documented plays an important role in ensuring
that they can be read, analysed, (re-)written, and validated. In order
to easily communicate requirements among different stakeholders, I stick
to the simple solutions throughout this thesis. Keeping it simple results
in a limited expressiveness but also leads to benefits discussed in the
oncoming sections.

This chapter will propose a new concept for expressing requirements. In
textual notations, syntax is described by the set of characters used (al-
phabet) and their possible sequences. Syntactical issues purely focus on
the notation, completely disregarding any intention (semantics) behind
the notation. The semantics of a language tell us about the meaning
of each construct of the language in question. This is usually done by
explaining the constructs of the language in terms of already known (and
hopefully well understood) concepts.

According to [Rum98], several degrees of formality of a notation exist. If
the syntactic shape of a notation is precisely defined, then the syntax is
formalised. However, based on the syntax the meaning of the notation
has still to be defined. The benefits of a ‘formalization’ mapping are
less that it is ‘formal’ afterwards, but more that the mapping of a new
notation into a given formalism let properties of the new notation become
apparent that had been hidden before. This allows a deeper and better
understanding of the new notation.

Different artefact types are used at different abstraction levels through-
out the software engineering process. For instance, UML models or other
specification techniques can be used at the design level. This chapter
discusses which artefact ‘element’ is involved in which requirements in-
dependent of specific artefact types. Chapter [6] will define the artefact-
type-specific semantics for UML 2.0 models.

As sketched in section [2.4] a new constraint technique is presented here
that adapts to changes more easily because it indirectly selects its con-
strained elements according to their metadata. This metadata must be
formatted in order to use it for the constraint techniques. First, section
m proposes a syntax (format) for metadata called ‘context properties’.
Then, the new constraint technique that refers to this formatted meta-
data is explained in section [3.3] Finally, section discusses how to
turn these constraints into business rules by considering events and ac-
tions. Each section starts with an informal, intuitive description of the
presented concept, and then defines a textual syntax before providing for-
mal semantics that explain the new concepts in terms of already known
concepts.

21

3 Context-Based Constraints (CoCons) 22

3.2

3.2.1

Introducing Context Properties

What is Context?

Linguistic Context

Avoiding Complexity

Internal Context

As explained in section this thesis presents a new notion of con-
straints that select their constrained elements according the element’s
metadata. Hypothetically, any kind of metadata of an element can be
used to identify whether this element is a constrained element or not.
However, I focus on only one kind of metadata here: I only consider
metadata describing the context of elements. This section presents my
definition of ‘context’ .

First, the linguistic notion of context defined in the dictionary of phi-
losophy ([Ang92]) is briefly explained:

context (L. contexere, ‘to weave together.” from con, ‘with’,
and texere, ‘to weave’): The sum total of meanings (asso-
ciations, ideas, assumptions, preconceptions, etc.) that (a)
are intimately related to a thing, (b) provide the origins for,
and (c) influence our attitudes, perspectives, judgments, and
knowledge of that thing.

If something is seen in context or if it is put into context, it is considered
with all the necessary factors that are related to it so that it can be
properly understood rather than just being considered on its own. If
something is taken out of context, it is only considered on its own, but
the circumstances in which it was defined are ignored. In that case, it
can mean something different from the meaning that was intended.

This thesis focuses on the context of software system elements. It uses
context for one specific purpose explained in section[2:4} it needs context
in order to distinguish those software system elements that reside in the
same context from other elements that don’t. However, each element
resides in an infinite number of contexts — according to [SG89, [KS96], it
is impossible to list all contexts of an element because it is not possible
to completely define what an element denotes. All context definitions
developed in computer science fail to provide a general theory of context
as discussed in [Hir00]. Only limited context models can be handled.
Thus, this section presents a simple and limited context model. But
first, some related research is discussed.

The context models used in software engineering all focus on internal con-
text of software systems as explained next. A software system consists of
artefacts, like source code files, configuration files, or models. One arte-
fact can consist of several elements. An internal element is contained
in at least one of the system’s artefacts. For example, the name of a
component, the name of a method, or the name of a method’s parameter
are internal elements because these names are defined in the system’s
artefacts. On the contrary, an external element is not contained in
any of the system’s artefacts. An internal context of a software system
element refers to other internal elements. It does not refer to external
elements. For instance, the ‘context of a component’ is defined as ‘the re-
quired interfaces and the acceptable execution platforms’ of components
in [Szy97]. This is an internal notion of context because it only refers
to internal elements that are part of the system: other components or
containers are defined as context of a component. In the UML 2.0 spec-
ification (JOMGO3b]), context is defined as ‘a view of a set of related
modelling elements for a particular purpose, such as specifying an opera-
tion’. Again, this is an internal notion of context: the context of a model

3 Context-Based Constraints (CoCons) 23

External Context

No Context of Context

Situational Context

Context (Intuitive Def.)

element refers to other internal model elements. In general, the context
definitions used in software engineering only consider internal context.

I propose also to take non-internal contexts into account. Context should
assist in selecting constrained elements regardless whether their context
is part of the system or not. The system, however, must not necessarily
be modified in order to manage additional context as internal context.
Instead, the additional context can be managed in an external repository
that refers to the system’s elements in order to identify those system
elements that reside in the external context. Hence, context can be taken
into account even if it is not part of the system at all. As soon as an
externally defined context is added to the system’s artefacts it becomes
internal context.

The internal context of an artefact element is expressed via other arte-
fact elements. Therefore, the context of a context can be expressed
because the context itself is an artefact element whose context again can
be described via another artefact element (whose context again can be de-
scribed via another artefact element and so on). Considering the context
of a context can result in very complex context models typically devel-
oped in artificial intelligence (AI) research (see section [3.2.6). I ignore
such complex context models because I express context of an element to
distinguish those elements that reside in the same context from other ele-
ments that don’t. In order to identify whether an element directly resides
in a context, it is not necessary to consider the context of this context.
Only the direct context of an element is needed in order to distinguish it
from the other elements that do not directly reside in this context.

Situational context is defined in [Dey01] as ‘any information that can
be used to characterize the situation of an entity’. This notion needs a
precise definition of ‘situation’. In situation calculus ([Dev9l]), situa-
tion is defined as a snapshot of the world at a particular point in time.
While situations are a complete state of the world at a certain time, our
knowledge of a situation is necessarily incomplete. Hence, an agent can
only pick out a structured part of the reality that represents a situation.
This definition suits well for this thesis because context is used here for
distinguishing those elements that are involved in a requirement from the
other elements. A context is not a situation, for a situation (of situation
calculus) is the complete state of the world at a given instant. A single
context, however, is necessarily partial and approximate. It cannot com-
pletely define the situations. Instead, it only characterizes the situation.

I express context in order to identify those elements that are involved
in a requirement and informally define it as follows:

e The context of a software system element characterizes the situa-
tion(s) in which the element resides.

e Context that is not part of or managed by the system can be taken
into account.

e The context of a context is ignored here.

The next sections present a syntax for expressing context of software
elements and provides some examples before defining the semantics for-
mally.

3 Context-Based Constraints (CoCons) 24

3.2.2 Context Properties: Formatted Metadata Describing Elements

Context Property

BNF

Textual Syntax

Context Property Name

Context Property Value

The context of an element can be expressed as metadata (called ‘meta-
attributes’ in [SSR92, [SSRI4]). Over the last decade, metadata concepts
are increasingly used to handle the required flexibility of global software
and information infrastructures (see, e.g., [Bre94]). The explicit intro-
duction of metadata concepts for many purposes results in a wide variety
of specific definitions of metadata as discussed, e.g., in [Bus02]. This sec-
tion proposes a metadata syntax (or ‘format’) for describing the context
of elements. Without an agreed syntax for the metadata, tools cannot
automatically decode it. Hence, this section informally defines a syn-
tax and its semantics for context. The same syntax and semantics are
formally defined afterwards in section [3.2:4]

According to [Bak00], the attribute-value pair model is the commonly
used format for defining metadata today. As well, this thesis suggests
expressing context in the simple attribute-value syntax. As an alterna-
tive, the context of an element could be expressed in more complex data
schemas. For instance, the context of an element can be expressed in
hierarchical, relational, or object-oriented data schemas. Complex data
schema types provide a better expressiveness, but are more difficult to
understand. The rationale for using a non-hierarchic, non-relational, and
non-object-oriented data scheme is simplicity. The concepts introduced
in this thesis are based on the attribute-value syntax. Section [3.3.3] will
discuss how to adopt this simple approach to more complex data schemas.
But first, let’s keep it simple.

In this thesis, a context property is a typed attribute: it consists of a
name and a set of values as explained next and illustrated in figure [3.1
First, the syntax of context properties is defined via BNF rules. After-
wards, this section informally explains the semantics of context proper-
ties.

The standard technique for defining the syntax of a language is the
Backus-Naur Form (BNF), where “::=" stands for the definition, “Text”
for a nonterminal symbol and “TEXT” for a terminal symbol. Square
brackets surround [optional items], curly brackets surround {items that
can repeat} zero or more times, and a vertical line ‘| separates alterna-
tives.

When associating values of one context property with an element, the
following syntax (or format) is used:

Syntax for Associating Context Property Values With an Element

DirectConPropValues = ContextPropertyName [‘("’ Element-
Name‘)’ | ‘> ContextPropertyValue
{*y’ ContextPropertyValue}

A context property is a typed attribute that consists of a name and one or
more values. The context property name (called ContextPropertyName
in the syntax definition given above) groups semantically related contexts.
For example, the context property name ‘Workflow’ groups the names of
the workflows in which the associated element is used.

The BNF rule ContextPropertyValue defines the valid values of one
context property name. A subset of the valid values can be associated
with a single element for each context property name. These context
property values describe how or where this element is used — they de-
scribe the context (as discussed in section of this element. The

3 Context-Based Constraints (CoCons) 25

name of the context property stays the same when associating its values
with several elements, while its values might vary for each element. If a
context property value v is associated with a runtime artefact element e
then it represents the current context of e at runtime.

Example The values of the context property named ‘Workflow’, e.g., reflect in
which workflows the associated element is used as discussed in section
[3:2:3] For instance, the four values allowed for Workflow can be ContextPropertyValue
:= ‘New Contract’ | ‘Delete Contract’ | ‘Integrate Two Contracts’
| ‘Split One Contract’, ‘Create Report’. They are called valid
values because no other values of the context property Workflow can be
associated with an element. The set of valid values defines the type of the
context property - it determines which values are allowed. The expression
“Workflow(ContractManagement): ‘Delete Contract’, ‘Create Contract’,
‘Integrate Two Contracts’” associates the three values ‘Delete Con-
tract’, ‘Create Contract’ and ‘Integrate Two Contracts’ of the context
property ‘Workflow’ with the element ‘ContractManagement’. Provid-
ing the name of the associated element ‘ContractManagement’ in round
brackets after the context property name is not required if the values are
associated with the element already as depicted via a dotted line in figure

B

Workflow: Delete Contract, Create Contract,

fffffff Contract
Integrate Two Contracts

Management

Figure 3.1: Graphical Notation for Context Properties

Graphical Notation In figure three of the valid values of the context property ‘Workflow’
are associated with the component ‘Contract Management’. They de-
scribe, in which workflows the component Contract Management is used.
The context property symbol resembles the UML symbol for comments
because both describe the model element to which they are attached. The
context property symbol is assigned to one model element and contains
the name and values of one context property associated with this model
element.

3.2.3 Context Property Examples

This sections lists examples of general context properties for component-
based systems. They are called general because they can be applied
to any element type. More examples for context properties useful in
component-based software systems are provided in [Biitb02a].

‘Workflow’” The values of the context property ‘Workflow’ reflect the workflows in
which the associated element is used. Hiding avoidable granularity by
only considering static aspects of behaviour (= nothing but workflow
names) enables developers to ignore details. Otherwise, the complexity
would get out of hand. The goal of the approach presented here is to
keep the requirement specifications as straightforward as possible. If
preferred, the term ‘Business Process’ or ‘Use Case’ may be used instead
of “Workflow’.

‘Operational Area’ The values of the context property ‘Operational Area’ describe, in which
department(s), module(s), or domain(s) the associated element is used.
It provides an organisational perspective.

‘Classified Data’ The values of the context property ‘Classified Data’ signal whether an

3 Context-Based Constraints (CoCons) 26

...are External Context

Quick Tour 99 Section

element handles confidential data. In many examples throughout this
thesis a refined version of this context property is used: the values ‘True’
or ‘False’ of the context property ‘Personal Data’ signal whether an
element handles data of private nature or not.

Such context information is typically not part of a system’s source code.
In order to enrich a system with context information, we don’t have to
modify its source code or its binary components. Instead, we can manage
the context-information in an external repository.

The primary benefit of enriching elements with context properties is re-
vealed in section [3.3] where they are used to specify ‘context-based con-
straints’. Readers in a hurry can skip their formal definition of context
properties in the next sections and proceed in section [3.3] on page [30}

3.2.4 Formal Definition of Context Properties

Def. Context Property
Syntax

Def. Context Property
Semantics

The previous section has informally defined a context property as a typed
attribute. A formal definition of these typed attributes will be needed in
section |3.3.7l However, typed attributes can be formalized in many ways.
This section first defines a formal syntax and then the formal semantics
of context properties in order to provide a basis for section Section
[3:3:3 will discuss how to replace the formal definition of context properties
presented here with other context models

The formal syntax definition of a context property as 2-tupel (cp, VVP)
is introduced in [Biib0Oal and refined here:

1. CP is the set of the names of all context properties used in the
system.

2. ¢p € CP is the name of one context property (e.g. ¢p; =‘workflow’)

3. VV is the set of valid values for one context property cp € C'P.
For instance, the five values allowed for ¢p; can be VV Pt = { ‘New
Contract’, ‘Delete Contract’, ‘Integrate Two Contracts’, ‘Split One
Contract’, ‘Create Report’}. They are called valid values because
only values that are contained in V'V can be associated with an
element.

In section [3.2.2] a textual syntax for context properties was defined.
This textual syntax corresponds to the formal syntax defined here as
follows: the BNF rule ContextPropertyName defines the set C'P of the
names of all context properties used in the system, and the BNF rule
ContextPropertyValue defines the set of valid values VV°?. The formal
syntax defined here is more precise than the textual syntax defined in the
previous section because V'V contains the valid values of one context
property cp, while ContextPropertyValue can contain the valid values
of all context properties Vi : ¢p; € CP.

A context property value can be associated with an element in order to
describe the element’s context. This can be formally defined as follows:

1. E is the set of all elements in the system (model), e.g. e; = the
component ‘ContractManagement’.

2. Multiple values vy, € VV can be directly associated with one
element e € E via the directvalues mapping:

. cp
directvaluesy, : E — PV

3 Context-Based Constraints (CoCons) 27

For one context property cp € CP it maps an element e € F
to a subset of cp’s valid Values VVP — denoted as an element in
the power set PVV" (e.g. directvalues.y, (e1) = {‘Integrate Two
Contracts’}).

3. Optionally, ‘inter-value constraints’ can be defined for a context
property cp. An inter-value constraint forbids or enforces certain
values to be contained in directvalues.p(e) according to other val-
ues in directvalues.p(e).

The textual syntax for associating context property values with an ele-
ment is defined in section 3.2.21 The BNF rule ElementName defines the
set F of all elements in the system (model). The subset of the valid values
V'V of the context property cp = ‘Workflow’ can be associated with the
element e either via the formal syntax presented here or via the textual
syntax defined in section[3.2.2] The BNF rule DirectConPropValues rep-
resents the mapping directvalues.,(e), where e corresponds to Elementname,
and ¢p to ContextPropertyName. For example, the following two nota-
tions have the same semantics:

o directvaluesy ork flow (ContractManagement) = { ‘Integrate Two
Contracts’, ‘Split One Contract’}.

e Workflow(ContractManagement): ‘Integrate Two Contracts’,
‘Split One Contract’

Inter-Value Constraints Defining the valid values does not prevent contradicting values. For in-
stance, the valid values of the context property ‘Personal Data’ can be
defined as {‘True’, ‘False’}. However, this definition does not prevent
associating both ‘True’ and ‘False’ with the same element. Inter-Value
constraints can specify dependencies between the context property val-
ues of an element. They can express that if an element is associated with
a certain context property value then it must (or must not) be associ-
ated with another context property value. An inter-value constraint can,
e.g., state that an element having the value ‘True’ must not be associ-
ated with ‘False’ and vice versa. Moreover, inter-value constraint express
more than contradicting values. They can express whether certain values
of one element can be derived from other values associated with the same
element. If, e.g., the workflow ‘Integrate Two Contracts’ is part of the
workflow ‘CustomerMarriage’ then the value ‘CustomerMarriage’ should
be associated with all elements which already have the value ‘Integrate
Two Contracts’ for ‘Workflow’. An inter-value constraint can express this
dependency by stating that an element having the value ‘Integrate Two
Contracts’ must also have the value ‘Customer Marriage’. Inter-Value
CoCons introduced in section [5.6] can define such inter-value constraints
that express dependencies between context property values.

3.2.5 Useful Context Property (Stereo-)Types

No Context Classification As discussed in section [3.2.1] it is not possible to list the complete context
of an element. For example, a physical context a copy of this thesis lying
in the office can be defined as ‘is in the office’. This is not the only physical
context of the document, though. Instead, endless physical contexts exist:
the document also resides in the physical context ‘in the house containing
the office’, or ‘on a little blue green planet orbiting a small unregarded
yellow sun at a distance of roughly ninety-two million miles far out in
the uncharted backwaters of the unfashionable end of the western spiral

3 Context-Based Constraints (CoCons) 28

(Stereo-) Types

arm of the Galaxy’([Ada79]) — an element resides in numberless physical
contexts.

Physical context is not the only kind of context. Countless other kinds
of context exist, e.g. conceptual, social, historical, or cultural context,
because for each of the context of an element a new kind of context
could be defined. Hence, this thesis neither can list all contexts of an
element nor can it list all kinds of contexts. Some examples of typical
contexts for component-based systems are provided in [Biib02a]. Even
these examples are not a complete list of all contexts that can be con-
sidered in component-based systems. Instead of providing an incomplete
list of context properties, section will discuss methodical guidance on
identifying relevant context properties for a specific application domain.

A classification of contexts cannot be complete. Nevertheless, this sec-
tion proposes to distinguish three types of context properties according
to a technical criterion on their valid values: a context property type
groups those context properties whose values can automatically be han-
dled by a tool in a special way. Context property types are defined via
UML stereotypes here. According to [OMGO03Db], a stereotype refines an
already existing concept. Stereotypes may extend the semantics, but not
the structure of pre-existing concepts. Two useful stereotypes for refining
the semantics of context properties are suggested:

<«Numbers> : The valid values of a «Number> property are numbers. In ad-

dition to normal context properties, the particular measurement is
added in round brackets to the context property name, e.g. ‘«Num-
ber> Amount (in Instances)’ . Context properties whose values are
number can be used by tools for calculation.

«System> : The current values of a <System> property can be extracted from

the system each time when they are retrieved. For instance, the
current local time of an element is a <System>» property.

These two context property types can overlap: a «Numbers property
can also be a «System> property. For instance, the ‘current local time’
of an element used as an example for «System> properties above is also
a <Number> property.

The third type of context properties are the normal context properties
who neither have numbers as values nor have values that can be queried
from the system. They are not refined via a stereotype because they do
not refine the context property definition given in this chapter.

3.2.6 Research Related To Context Properties

Formalizations of Context

The problem of context has a long tradition in different areas of artificial
intelligence (AI). The issue of formalizing context has become widely
discussed in the late 80s, when McCarthy argued that formalizing context
is a crucial step towards the solution of the following problem: ‘Whenever
we write an axiom, a critic can say that the axiom is true only in a
certain context. With a little ingenuity the critic can usually devise a
more general context in which the precise form of the axiom doesn’t
hold’ ([McC87]). Since McCarthy, two main formalisations have been
proposed in Al: propositional logic of contexts (PLC), and Local Models
Semantics / Multicontext Systems (LMS/MCS). An in depth comparison
of both approaches is provided in [BS02], and a survey on these and other
approaches on formalizing context is given in [AS96]. However, none of
these formalizations are discussed in detail here because they all express

3 Context-Based Constraints (CoCons) 29

Semantic Values

Domains

Tagged Values

Stereotypes or Packages...

...Cannot Change at
Runtime

context of propositional logic formulas. The discussion on considering
context in logical formulas continues in section [3.3.6]

As summarized in [SSR94], a concept similar to context properties was
discussed in the 90ties: database objects are annotated via intensional
description called ‘semantic values’ ([SG89L [SSR92]) in order to identify
those objects in different databases that are semantically related. Like-
wise, context properties are annotated to elements in order to determine
the relevant element(s). However, the semantic value approach has a
different purpose and, thus, a different notion of relevant: the purpose
of semantic values is to identify semantically related objects in order to
resolve schema heterogeneity among them. Still, the concepts are similar
because they both can denote elements residing in the same context.

Likewise, ‘domains’ ([ST94]) are similar to context properties. Domains
are typically used in policy management. In contrast to context proper-
ties, a domain consists of a single name and not of a name and value(s).
Moreover, domains are hierarchical.

Many notations for writing down metadata exist and can be used for
expressing the context of elements. In UML, tagged values can be used to
express context properties. However, in version 1.4 of UML or later, the
‘tag definition’ of a tagged value must be associated with a stereotype. In
contrast, a context property definition must not necessarily be associated
with a stereotype.

A context property groups model elements that share a context. Object-
oriented grouping mechanisms like inheritance, stereotypes ([BGJ99)]) or
packages are not used because the values of a context property associated
with one artefact element might vary in different configurations or even
change at runtime. Multiple values of several context properties can be
associated with the same element e. Let a system have n different valid
values in VVWerkflow Then for each v; € VVWorkflow 4 element e ‘s’
or ‘is not’ (= 2 possibilities) associated with v;. Allowing for all possible
combinations, you would need up to 2" different stereotypes in UML 1.3
because according to [OMG99], it is not allowed to have more than one
stereotype per element.

This multiplicity has changed to 0..x in UML 1.4 and later. So that in
UML 1.4 only n different stereotypes are needed for associating any of n
valid values of the context property ‘Workflow’ with it. However, even
UML 1.4 multi-inheritance of stereotypes is unsuitable, since usually the
values of more than one context property are associated with one model
element. Considering only one additional context property, e.g. ‘Oper-
ational Area’ with m valid values that overlaps with ‘Workflow’ having
n valid values would result in up to n x m stereotypes in UML 1.4, and
up to 2"*™ in UML 1.3. Furthermore, the values of a context property
might vary in different configurations or change at runtime. A model el-
ement is not supposed to change its stereotype or its package at runtime.
One context property can be associated with different types of model
elements. For example, the values of ‘Workflow’ can be associated both
with ‘classes’ in a class diagram and with ‘components’ in a component
diagram. Using packages or inheritance is not as flexible. According to
[OMGO3D], stereotypes can group model elements of different types via
the baseClass attribute, too. However, this ‘feature’ has to be used care-
fully. Moreover, an element is not supposed to change its stereotype, its
inheritance, or its package at runtime. Context properties facilitate han-
dling crosscutting requirements because they are a simple mechanism for

3 Context-Based Constraints (CoCons) 30

Metadata in Java

grouping otherwise possibly unassociated model elements - even across
different views, artefact types, artefact element types, or platforms.

Such context information is typically not part of a system’s source code.
Still, we need to store it somewhere if we want to refer to it. In order
to enrich a system with context information, we don’t have to modify
its source code or its binary components. Instead, we can manage the
context-information in an external repository. Of course, the context
properties can also be managed in the source code. For instance, the
new Java metadata facility, a part of J2SE 5.0, is a significant recent
addition to the Java language. It includes a mechanism for adding custom
annotations to your Java code, as well as providing a programmatic access
to metadata annotation through reflection.

The primary benefit of enriching elements with context properties is re-
vealed in the next section, where elements are selected according to their
context property value in order to identify those elements that are in-
volved in a requirement.

3.3 Introducing Context-Based Constraints (CoCons)

This section presents a new constraint technique called ‘CoCons’ for spec-
ifying crosscutting requirements. It was introduced in [Biib02b] and re-
fined in [BBO5]. First, CoCons are informally explained in section [3.3.1]
Then, section [3.3.2] and [3.3.3] define a textual syntax for expressing Co-
Cons. As explained in section [2.3] a key goal of this thesis is checking
system artefacts for compliance with CoCons automatically. Section|3.3.5
discusses how to achieve this goal by precisely defining the CoCon seman-
tics. Afterwards, the artefact-type-independent CoCon semantics are for-

mally defined in section and Finally, section discusses

related research.

3.3.1 Intuitive Definition of Context-Based Constraints

Intuitive Def. CoCon

Example A

Example B

A context-based constraint (CoCon) is expresses a condition on how
its constrained elements must relate to each other. This condition is
called CoCon-predicate. Different CoCon-predicates exist. For ex-
ample, a CoCon-predicate can express that certain elements must (or
must not) be accessible to other elements (security requirement). An-
other CoCon-predicate could express that certain elements must (or must
not) be allocated to certain computers (distribution requirement). More
CoCon-predicates will be introduced in chapter f] The metamodel in
figure shows the abstract syntax for CoCons. Its metaclasses are
informally explained next.

If values of the context property ‘Personal Data’ (see section [3.2.3) are
associated with the system components then a CoCon can state that

“All components whose context property ‘Personal Data’
has the value ‘True’ must be inaccessible to the component
‘WebServer’” (Example A).

This constraint is based on the context ‘Personal Data’ of the components
— it is a context-based constraint that expresses a CoCon-predicate on
how its constrained elements must relate to each other: they must not
access each other.

Another example requirement is based on the context ‘Workflow’ of the
components involved:

3 Context-Based Constraints (CoCons) 31

Context Condition

Two Sets

‘Target Set’” and ‘Scope Set’

Direct Association

I

0..* 0.*
Constraint ~ Element
+Constraint +ConstrainedElement
? 1 T
1 0.* 0.
Context-Based Constraint Context Property Context Property
(CoCon) Name Value
+type
0% 0.* /:\
- L +ContextPropertyValue : *
0.1 +ScopeSet 0.1 +TargetSet Indirect Association I
(New) :
|

Context Condition e L X ST b S S

Figure 3.2: The CoCon Metamodel

“The component ‘EmployeeManagement’ must be inac-
cessible to all components whose context property ‘Workflow’
contains the value ‘Create Report’” (Example B).

One requirement can affect several possibly unassociated elements. A
CoCon can indirectly select its constrained elements via context condi-
tions. A context condition selects artefact elements according to their
context property values. As discussed later on in section |3.3.8] context
conditions are similar to point cuts in aspect-oriented programming. It
may be restricted to artefact elements of one element type. In UML,
a model ‘element type’ is called ‘metaclass’. As result of a range, no
(model) elements of other types are selected even if their context prop-
erty values fit the context condition. Throughout this thesis, the context
conditions are mostly restricted to ‘components’.

A CoCon can relate many sets of constrained elements. I only discuss
CoCons that relate two sets of elements. Figure [3.3] illustrates that a
CoCon relates each element of one set to each element of the other set
and expresses a CoCon-predicate (depicted as dotted arrows) for each
pair of related elements.

Target Set Scope Set

Figure 3.3: A CoCon Relates any Element of the ‘Target Set’ with any
Element of the ‘Scope Set’

The two sets related by a CoCon are called ‘target set’” and ‘scope set’.
In example A, the ‘target set’ is selected via the following context con-
dition: “All components whose context property ‘Personal Data’ has the
value ‘True’”. And in example A, the ‘scope set’ of the CoCon contains
a single element — the component ‘WebServer’. Both sets can contain any
number of elements, as illustrated in example B. Yet, in some cases the

3 Context-Based Constraints (CoCons) 32

Selecting Set Elements...

names ‘target set’ and ‘scope set’ do not seem appropriate. Mixing exam-
ple A and example B, a CoCon could state that “All components whose
context property ‘Personal Data’ has the value ‘True’ (Seti) must be
inaccessible to all components whose context property ‘Workflow’ con-
tains the value ‘Create Report ’ (Sety)”. Sety is called the scope set
here. Nevertheless, which part of the system is the scope in this exam-
ple? Should those elements of the system be called ‘scope’ which are
inaccessible (Sety), or does ‘scope’ refer to all elements (in Sety) that
cannot access the elements in Set;? Should Set; be called ‘scope set’
and Sety ‘target set’ or vice versa? Unfortunately, there is no intuitive
answer in all cases. Nevertheless, it is better to give each set a name
instead of calling it Set; or Sets. For most CoCon-predicates (see sec-
tion |5)) , the names ‘target set’ for Set; and ‘scope set’ for Sets fit well.
Perhaps future research reveals names for these sets that always fit well.

Both target set elements and scope set elements of a CoCon can be either
directly or indirectly selected:

...directly : A set element can be directly associated with the CoCon. In ex-

ample A, the CoCon is directly associated with the ‘WebServer’
component by naming this component. This unambiguously iden-
tifies this component to be element of this scope set.

...indirectly (new) : Indirect selection is the key concept of context-based constraints.

Example A4+B = Privacy
Policy

Quick Tour 90t Chapter

Set elements can indirectly be associated with a CoCon via a con-
text condition. The scope set in example B contains all the compo-
nents whose context property ‘Workflow’ contains the value ‘Create
Report’. These scope set elements are anonymous. They are nei-
ther directly named nor directly associated, but described indirectly
according to their context property values. If no element fulfils the
context condition, the set is empty. This simply means that the
CoCon does not apply to any element at all.

This indirect selection is represented as a dotted line in fig. [3.2] because
it defines a dependency that only exists if the element’s context property
values fit the context condition. The indirectly selected elements are
identified by evaluating the context condition each time when an system
artefact is checked for whether it complies with the CoCon.

The privacy policy explained in section [2.2] can informally be expressed
via a CoCon as follows:

All components handling personal data must be inacces-
sible to all components used in the workflow ‘create report’.

This expression in natural language is a combination of example A and
example B. The target set elements are described as all components han-
dling personal data, the scope set elements are all components used in
the workflow ‘create report’, and the CoCon-predicate is x must be inac-
cessible to y, where x represents the scope set elements and y the target
set elements. The example above is expressed in natural language — the
next sections will define a textual syntax for CoCons that enables both
computers and business experts to understand the expressed requirement.

However, why should anyone use a textual syntax and write down Co-
Cons at all? Answers to this question will be given in chapter [d It will
discuss algorithms that detect violated or contradicting requirements au-
tomatically if the requirement has been written down as a CoCon. Quick
readers can skip the syntax details and proceed with chapter @ on page

3 Context-Based Constraints (CoCons) 33

Replaceable Modules of
CoCons

CoConAUTHOR
COMMENT
CoConNAME

PRIORITY

In BASIC: GOTO [4] Nevertheless, be careful — according to [Dij6§]|,
jump instructions are “considered harmful”. FEven if you plan to skip
the syntax details, you might take a look at the formal CoCon semantics
explained in sections and before proceeding with chapter

CoCon Predicate

C(xy)
I

Uses
258 ¢ ?7
SE3 ” :
203 Context Condition) Context Properties
o 8 o L
& g = Query Language SLBrEs Refento Data Schema
ey
g (8]
o

Figure 3.4: The Replaceable Conceptual Modules of CoCons

Section [3:3-3] will discuss different query languages for expressing con-
text conditions. The context condition query language depends on the
context property data schema used. The semantics of a CoCon stay the
same even if the context property data schema and the context condition
query language are exchanged. Figure illustrates these replaceable
conceptual modules of a CoCon.

Additionally, a CoCon attribute can define details of its CoCon. Each
attribute has a name and one or more value(s).

A CoCon’s author can be defined via the attribute CoConAUTHOR .
A comment describing the CoCon can be defined via the attribute COMMENT.

A CoCon can be named via the attribute CoConNAME. This name must
be unique because it is used to refer to this CoCon.

A CoCon defines relation between its scope set elements and its target
set elements. It relates each element of one set to each element of the
other set and defines a CoCon-predicate between each pair of related
elements. However, CoCons can contradict each other if they refer to
the same element(s) but state contradicting CoCon-predicates for these
elements. If the contradicting CoCons have different priorityPRIORITY
then only the CoCon with the highest priority applies. If this CoCon is
invalid because its scope or target set is empty then the next CoCon with
the second-highest priority applies.

3.3.2 The Common CoCon Syntax

Rule+ (O | AND)

This section introduces the common textual syntax of CoCon. It is called
‘common’ syntax because it defines the basic CoCon syntax for all CoCon-
predicates. Certain BNF rules differ between different CoCon-predicates.
They must be refined for each CoCon-predicate as explained below. The
semantics of the terms used here have informally been explained in section
[3:31] and will formally be defined in section [3.3.6]

BNF Rules concerning the separators *,”; ‘OR’ or ‘AND’ are abbreviated:
“Rule { Separator Rule }«” is abbreviated “(Rule)-Separator?

3 Context-Based Constraints (CoCons) 34

Privacy Policy Example

Common Syntax of Context-Based Constraints

CoCon n= TargetSet ‘MUST’
[PredicateOperation] ‘BE’
CoConPredicate ScopeSet [‘WITH’
(Attribute)+4VP] [457]

PredicateOperation:= ‘NOT’ | ‘ONLY’

TargetSet = ElementSelection [‘AMONG
WHOM’ [‘NOT’] ‘EXIST(S) ’
ElementSelection]

ScopeSet = ElementSelection [‘AMONG
WHOM’ [‘NOT’] ‘EXIST(S) ’
ElementSelection]

ElementSelection := (SelectionExpr |

(“(’ElementSelection ¢)’)
) +(OR | AND)

SelectionExpr m= (IndirectSelection |
DirectSelection)4(OF | AND)
DirectSelection = (‘THE’ [ElementTypeAlias]
ElementType ElementName) | ‘THIS’
IndirectSelection ::= Cardinality [ElementTypeAlias]
ElementTypes [ContextCondition]
Cardinality z= ‘ALL’ | Number | (‘BETWEEN’

LowerBoundNumber ‘AND’
UpperBoundNumber ‘OF ALL’)

Attribute = AttributeName ‘=’
(AttributeValue)+Commae

AttributeName x= ‘COCONNAME’ | ‘COCONAU-
THOR’ | ‘<COMMENT’ | ‘PRIOR-
ITY?

According to common BNF rules given above, the privacy policy ex-
plained in section can be expressed as follows:

All components handling personal data MUST NOT BE ACCESSIBLE
TO all components used in the workflow ‘create report’.

Some parts of this statement are printed in italics, while other parts
are printed in UPPERCASE TYPE WRITER font because this common Co-
Con syntax definition provided above is incomplete. Only the parts in
UPPERCASE TYPE WRITER font are defined above. The italic parts of the
example expression are not defined yet. In detail, the following rules are
not defined here yet:

e The values of the CoConPredicate rule define the names of the
CoCon-predicates. Details on defining a CoCon-predicate will be
discussed in section [3.3.5]

e The ContextCondition rule defines a query language for indirectly
selecting the elements constrained by the CoCon according to their
context property values. Section will suggest a query language
and compare it with other query languages.

o The values of the ElementType and the ElementTypes rules define
the type of the elements that are selected, e.g. components. They
are not defined here yet because these values depend on the appli-
cation domain of CoCons. ElementTypes suitable for component-
based systems are defined in appendix [A]

3 Context-Based Constraints (CoCons) 35

e A CoCon’s target set or scope set can be restricted to elements of
one type. If both sets are restricted to the same element type, e.g.
components, then the ElementTypeAlias rule can be used to define
an alias for one set, e.g. ‘ScopeComponents’, in order to distinguish
the elements on one set from the elements in the other set. Section
discusses the semantics of ElementTypeAlias in more detail.

e The values of the ElementName rule refer to the names of individual
elements of the system to which the CoCon is applied.

e The rule PredicateOperation allows to place the operation NOT or
the operation ONLY after the keyword MUST. This CoCon-predicate
Operation changes the semantics of a CoCon-predicate. Its effect
is formally defined in section [3.3.6]

e The BNF rule ElementTypes names the type of the elements that
are selected via this context condition, e.g. components.

e The terminal symbol ‘THIS’ in the DirectSelection rule has the
same meaning as ‘self’ in OCL (see |CKM™99b, WK99]): if the
CoCon is directly associated with a model element then ‘THIS’ di-
rectly refers to the associated model element. For example, if a
CoCon is associated with a component then THIS refers to this
component.

e The terminal symbol ‘ELEMENTS’ in the Restriction rules is needed
to specify unrestricted indirect selection of elements. It selects ele-
ments regardless of their metaclass. On the contrary, ‘ALL. COMPONENTS’
is a restricted selection. An example is given in section

e The values of ElementTypeAlias, of ElementName, and of AttributeValue
can be given in quotation marks. Either simple ‘quotation marks’
or double “quotation marks” are allowed.

Different alternatives for defining the ContextCondition rule are dis-
cussed in the next section.

3.3.3 The Context Property Query Language CPQL

The key concept of CoCon is the indirect selection of elements according
to their context. The context condition for indirectly selecting the ele-
ments involved can be expressed in different query languages. First, this
section sketches existing query languages. Next, it informally explains
the minimal functionality a query language should provide in order to
express context conditions. Finally, a syntax of a simple context prop-
erty query language is suggested. The formal semantics of this query
language will be defined in section [3.3.

Why a New Query A simple and flat attribute-value schema for context properties has been
Language? introduced in section [3.2] Of course, more complex data schemata for
storing the context properties of one element, e.g. hierarchical, relational,
or object-oriented schemata, can be used. If the context properties of each
artefact element are stored in a relational schema then a relational query
language, e.g. SQL, can be used to express context conditions. If the
context properties are stored in a hierarchical XML schema then a query
language for XML documents can be used, e.g. XQuery. When applying
CoCons, use your favourite query language. In terms of aspect-oriented
programming (see section hui), a context condition is a point cut which
determines the join points where to weave in the crosscutting advince.
Hence, CPQL is a point cut definition language.

3 Context-Based Constraints (CoCons) 36

CPQL

Query Capabilities

Context Conditions refer...

...to a Set

...to a Value

Cardinality

Total Selection

In this thesis, I stick to the non-hierarchical, non-relational, non-object-
oriented data schema for context properties defined in section [3:2] The
simple context property query language CPQL defined next expresses
context conditions for these non-hierarchical, non-relational, non-object-
oriented context properties.

Before introducing the CPQL syntax, details of context conditions are
informally discussed. A query language used for expressing a context
condition should provide the basic query capabilities discussed next. Of
course, the question, which query capabilities a context condition should
provide, depends on the personal taste and the application domain. As
with the context property syntax, I suggest sticking to simple solutions.
Maybe future research identifies reasons for reducing or enhancing the
query capabilities proposed next.

Two different kinds of context conditions exist. A context condition
should be able to refer either to a set of context property values or to a
single context property value.

On the one hand, a context condition should be able to compare sets of
context property values. According to section[3.2.4] one element e can be
associated with a set of values for one context property cp via valuescp(e).
This set of context property values can be compared to another set of
context property values via the following conditions:

e The condition ‘CONTAINS’ demands that one set is subset of or
equal to (C) the other set. Moreover, other logical set conditions
exist: DOES NOT CONTAIN (Z), ‘=" (equals), DOES NOT EQUAL (%),
INTERSECTS WITH (the-one-set N the-other-set # () and DOES NOT
INTERSECT WITH (the-one-set N the-other-set = ().

e Furthermore, two sets can be compared with logical conditions for
comparing numbers: if the set A is compared via >, >, <, or < to
the set B then each value of A must fulfil this condition for each
value of B. However, these comparison conditions are mostly used
for comparing single values instead of sets as explained next.

On the other hand, a context condition should be able to compare one
context property value veompare With each value v; € valuesc,(e). If v; is
a string, than = (equals) and != (does not equal) are suitable conditions
for comparing it with vVeompare. If v; is a number then — besides =
and != — the usual logical conditions for comparing numbers should be
provided by the query language: >, >, <, or <. If the set valuescy(e)
is compared with one value veompare then each v; € valuesqy(e) must be
compared with vcompare. The context condition only selects e if all v;
fulfil the logical condition.

A cardinality can limit the number of elements that are selected by
a context condition. For example, a context condition can be limited
to apply to only ‘3-7" elements. A CoCon having a limited cardinality
is called a flexible CoCon because its constrained elements can freely
be chosen from those elements that fulfil the context condition if more
elements fulfil the context condition than specified in the range. An
example will be discussed in section [5.4:4]

One kind of indirect selection should exist that doesn’t refer to context
property values: the total selection simply selects all elements regard-
less of their context property values. However, it can be restricted to
select only all elements of a certain metaclass, e.g. all ‘components’. The
ContextCondition part in the Indirect Selection rule of the CoCon

3 Context-Based Constraints (CoCons) 37

Combining Element
Selections

CPQL Syntax

Privacy Policy Example

syntax in section is optional because total selections are defined by
omitting a context condition: An example is given in section

In order to describe the elements of one set, direct and indirect element
selections can be combined. For instance, a target set can contain “the
component ‘CustomerManagement’ or all components that are used in
the ‘Create Report’ workflow”. In this example, a direct selection of the
component ‘CustomerManagement’ is combined with an indirect selec-
tion via ‘or’ . As a result, this example will always select the component
‘CustomerManagement’ and additionally more components if they are
used in the ‘Create Report’ workflow. Instead of the condition ‘or’ , the
condition and can be used to combine two element selections, too. In
this case, an element is only contained in the set if it fulfils both element
selections combined via ‘and’ .

The query capabilities of context conditions discussed above are consid-
ered in the following CPQL syntax definition:

The CPQL Syntax (Context Property Query Language)

ContextCondition == ‘WHERE’ Query+AND T OR)

Query = CompareTwoSets | SingleSetCondition

SingleSetCondition::= ContextPropertyName (‘IS EMPTY’ |
‘IS NOT EMPTY’)

CompareTwoSets = ContextPropertyName CompareCondition
Set0fConPropValues

Set0fConPropValues::= ContextPropertyValue | (‘BOTH’

ContextPropertyValue (‘AND’
ContextPropertyValue)+) | (‘EI-
THER’ ContextPropertyValue (‘OR’
ContextPropertyValue)+ | (‘THE
VALUES OF’ ContextPropertyName)

CompareCondition == ‘CONTAINS’ | ‘DOES NOT
CONTAIN’ | ‘=’ | ‘DOES NOT
EQUAL’ ‘INTERSECTS WITH’ |
‘DOES NOT INTERSECT WITH’ |
< | > | = | =

The values of ContextPropertyValue and ContextPropertyName must
be given in quotation marks. Either simple ‘quotation marks’ or double
“quotation marks” are allowed.

According to the common BNF rules given in section [3:3.2] the privacy
policy of section [2.2 can be specified as follows:

ALL COMPONENTS WHERE ‘Personal Data’ = ‘True’
MUST NOT BE ACCESSIBLE TO ALL COMPONENTS WHERE
‘Workflow” CONTAINS ‘Create Report’

The two text parts in ITALICS represent the two CPQL expressions
- one defines the target set elements, and the other one the scope set
elements. In section the same example has been expressed. But, in
section [3.3.1] both context conditions for selecting the target set elements
and the scope set elements were expressed in natural language. Now
they are expressed in CPQL. Thus, the syntax for expressing CoCons is
complete now. But, for which purpose do we need the syntax defined
here? These questions will be addressed in chapter [d] It will discuss how
to automatically detect requirements violations if the requirement has
been written down as a CoCon.

3 Context-Based Constraints (CoCons) 38

Before discussing the formal CoCon semantics in section the next
section suggests adding path expressions the CPQL syntax.

In this section, basic query capabilities of query languages for expressing
context conditions have been discussed. One query capability that turned
out to be useful in the case studies, however, has not been addressed yet.
It is suggested in the next section.

3.3.4 Navigation via Dot-Path-Notation

Navigation

Syntax

Semantics

Example

Referring to the other
Related Element

When evaluating a context condition, all system (model) elements are
checked for whether their context property values fit the context condi-
tion. In order to check all elements, step-by-step the context condition
is checked for each single element. When checking a single element this
element becomes the element in focus. The discussion of query capabili-
ties of context condition in the previous section only considers conditions
of the context property values of one element — the element in focus. In
addition, this section suggests considering the context property values of
other element when checking the element in focus, too.

In order to refer to context property values of other elements in a con-
text condition, the path to the other element must be given in order to
navigate from the focused element to the other element. As in the ob-
ject query language OQL or in the object constraint language in OCL
([WK99]), the Dot-Path-notation is suggested for expressing naviga-
tion paths here. It prevents ambiguity when addressing context property
values.

The Syntax of the Dot-Path-Notation

ContextPropertyName ::= [(ElementRole | Elementtype | Element-
TypeAlias) {‘.” (Elementtype | Element-
TypeAlias) }*] ContextPropertyName

This syntax definition of the Dot-Path notation can be integrated into
the query language syntax (see the previous section) because it refines
the ContextPropertyName rule used in the CPQL syntax definition.

If the other element is associated with the focussed element via (may be
nested) associations then it is possible to navigate to this context property
value along these associations via the dot-notation: the ElementRole of
the element to which the path navigates is added as a prefix. Navigating
via the dot-notation from one element to another is thoroughly explained
in [WK99]. The same syntax and semantics as in OCL is used here
for navigation along (may be several nested) associations. The result of
navigating from the focussed element to another element when referring
to a context property is that the context property values associated with
the other element can be considered in a context condition as discussed
in section

For instance, the element Product is associated with the element Con-
tract, and the context property value ‘Customer Marriage’ of the context
property ‘Workflow’ is associated with the element Contract. If Product
is the currently focussed element then ‘Contract.Workflow’ refers to the
value ‘Customer Marriage’ associated with Contract. A more detailed
example is given in section

Besides navigating along associations, another notion of navigation is
proposed next. A CoCon relates each element of its scope set with each
element of its target set. A context condition on elements of one of these

3 Context-Based Constraints (CoCons) 39

Example

sets should be able to navigate to the other, related element in order to
refer to the context property values of the other, related element. The
other element’s type (expressed via Elementtype) can be used to refer to
the other element’s context property values by adding the other element’s
type (followed by a dot) to the name of the context property as a prefix.
If the other element has the same type as the focused element then an
alias for referring to the other element (expressed via ElementTypeAlias)
can be used to refer to the other element’s context property values. The
result of a writing down the name of a type as a prefix before the name
of a context property is that only those values of this context property
associated with instances of this ‘other’ element are taken into account
when evaluation the context condition.

For instance, the context property ‘Location’ that describe the position
of elements can be addressed in a context condition. It the target set
contains elements of the type ‘User’ and the scope set contains elements
of the type ‘Component’ then the Dot-Path notation facilitates stating
clearly if an user’s location or a component’s location is addressed via
‘User.Location’ or ‘Component.Location’. Again, are more detailed ex-
ample is given in section [5.5.4] After informally introducing CoCons and
CPQL and defining their textual syntax in the previous sections, the next
sections define their formal semantics.

3.3.5 Two-Step Approach for Defining CoCon-Predicate Semantics

Two-Step Approach

As explained in section a key goal of this thesis is checking sys-
tem artefacts for compliance with CoCons automatically. This section
discusses how to formally define the semantics of a CoCon-predicate in
order to achieve this goal. Section [3:3.6] will formally define the CoCon-
predicate semantics as discussed here.

Step 1 Step 2
Artefact-Independent For Each Artefact-Specific
Semantics of a Artefact [Semantics of a CoCon Used Artefact Type
CoCon Predicate Type Predicate (in formal or By Metamodel

(in plain English)

semi-formal Language) ‘

Meta Level

T
Used By Used By Used By

______ |

i

\
Tools for Monitoring :]
Specific Artefact Type Check{> “A‘:{::;(T:

Figure 3.5: Two-Step Approach for Defining the Semantics of CoCon-
Predicates

Artefact Elements

CoCons can be applied to artefact types at different development levels,
like requirement specifications at analysis level, UML models at design
level, Java files at source code level, or component instances at run-
time. Figure illustrates the two-step approach for defining semantics
of CoCon-predicates:

e The artefact-type-independent semantics of a CoCon-predicate
do not refer to specific properties of an individual artefact type. For
instance, the artefact-type-independent semantics of the ACCESSIBLE

3 Context-Based Constraints (CoCons) 40

Checkable Artefact Types

TO CoCon-predicate used in the privacy policy example of section
are defined as follows: An ACCESSIBLE TO CoCon defines that
its target set elements are accessible to its scope set elements. Chap-
ter [5] lists more artefact-type-independent semantics definitions in
plain English. Nevertheless, what exactly is the meaning of ‘x must
be accessible to y’? Does it, e.g., mean that certain relationships
or dependencies must or must not exist in a UML diagram in order
to comply with this CoCon? This is not defined here because it
depends on the artefact type. Instead, it is defined in the artefact-
type-specific semantics definition described below.

e The artefact-type-specific semantics of a CoCon-predicate de-
fine how to check artefacts of a certain type whether the artefact
element x relates to the artefact element y as demanded by the Co-
Con. If a metamodel exists for the artefact type then the artefact-
type-specific semantics are defined in terms and constructs of this
metamodel in a formal or semi-formal language. For example, what
is the meaning of ‘z must be accessible to y’ in UML 2.0 models?
The artefact-type-specific semantics definition for ACCESSIBLE TO
CoCons for UML 2.0 models is explained in chapter [6] and specified
in appendix [B| starting on page — the artefact-type-specific se-
mantics definition is much longer (11 pages) then the artefact-type-
independent semantics definition (in plain English: ‘@ is accessible
to y), because it considers a lot more details.

A CoCon monitoring tool for a specific artefact type can automatically
check the compliance of artefact elements with CoCons if the artefact-
type-specific semantics are given in a (semi-)formal language that can
be interpreted by the monitoring tool. Artefact-type-specific semantics
can only be defined if t he artefact type manages concepts addressed
in the artefact-type-independent semantics of the CoCon-predicate. For
instance, not every artefact type describes how its elements access each
other. The artefact-type-specific semantics of ACCESSIBLE TO CoCons
can only be expressed for artefact types that address the concept of com-
munication.

3.3.6 Formalization of Context-Based Constraints

Predicate Logic

In logic, a subject is what we make assertions about, and a predicate
is what we assert about the subject. According to general convention,
subjects are symbolized by lower-case letters, and predicates by capital
letters. Hence, the proposition ‘the CustomerManagement component is
implemented as EJB ’ can be translated to ‘E(c)’ where ‘E()’ symbol-
izes the predicate ‘is implemented as EJB’ and ‘c’ symbolizes the subject
‘the CustomerManagement component’. Individual constants are sym-
bolized by (lower-case) letters from the front of the alphabet, e.g. a,
b, or c. Individual variables are symbolized by (lower-case) letters from
the end of the alphabet, e.g. x, y, or z. Constants are short names
or abbreviations for longer names — ‘c’ is a constant used to abbreviate
‘the CustomerManagement component’. Variables are placeholders that
range over individual objects — x in ‘E(x)’ is a variable because it spec-
ifies no individual on its own, but holds the place for an individual in the
universe of discourse. The universe of discourse, also called universe, is
the set of objects of interest. The propositions in the predicate logic are
expressions on objects of a universe. The universe is the domain of the
(individual) variables. For instance, it can be the set of all components
of a component-based system. There is an unary negation operator (‘=)

3 Context-Based Constraints (CoCons) 41

Mapping CoCons to
Predicate Logic

and standard connectives are used: conjunction (‘A’), disjunction (‘V’)
and implication(‘—’).

Quantifiers tell us of how many objects the predicate asserts. If we want
to assert a predicate of all objects, we use the universal quantifier ¥V (‘for
all’). For example, ‘Vz : E(z) states that, for all x, x is implemented
as EJB; or more idiomatically, all things in the universe of discourse (all
the components of a component-based system in this case) are imple-
mented as EJBs. In first-order logic, all variables range over individual
objects: all predicate letters are constants, and all quantifiers use indi-
vidual variables. In higher order logics, variables can be predicates and
allow quantification over predicates. Monadic predicate logic uses predi-
cates that take just one argument (called one-place predicates). Polyadic
predicate logic uses predicates (called many-place predicates) that take
two or more arguments. One-place predicates assert that their objects
have some property or attribute. Many-place predicates assert that their
objects stand in some kind of relation. Hence, monadic predicate logic
is sometimes called logic of attributes, and polyadic predicate logic is
sometimes called the logic of relations.

A CoCon selects two sets: each element of its target set must relate to
each element of its scope set as defined by its CoCon-predicate. These
CoCon semantics can be expressed via the following predicate logic for-
mula:

Vo,y: T(x) ANS(y) — C(z,y)

In this formula, the CoCon-predicate is defined via a (polyadic) relation
C(z,y), like x MUST BE ACCESSIBLE TO y. On the contrary, T'(x) and
S(y) are monadic predicates on a different level. They define the context
condition. As explained in section they are specified via a query
language. T'(z) represents the target set context condition, and S(y) rep-
resents the scope set context condition. The variable x holds all elements
in the target set, and the variable y hold all elements in the scope set. In
order to represent a CoCon, T'(x) must define a condition on the context
property values of x, and S(y) must define a condition on the context
property values of y.

The BNF rules of the common CoCon syntax presented in section [3.3.2
are mapped to predicate logic:

e CoConPredicate represents the CoCon-predicate C(z,y).
e TargetSet represents the context-condition-predicate T'(x).
e ScopeSet represents the context-condition-predicate S(y).

e The values of PredicateOperation represent the following opera-
tion on the predicate C(z,y):

— The terminal symbol NOT negates the relation C(z,y) as fol-
lows: Va,y: T(x) A S(y) — —~C(x,y)

— The terminal symbol ONLY is mapped to two propositions:
x Va,y: T(x) A=S(y) — -C(z,y)
* Yo,y : T(x) AS(y) — Clx,y)

e The universe of discourse is defined by the values of the ElementType
rule.

3 Context-Based Constraints (CoCons) 42

Example

Expressiveness

Why No Formal Syntax?

e The values of ElementName represent individual constants of the
universe of discourse.

For example, an ACCESSIBLE TO CoCon defines the CoCon-predicate that
each element z in the target set must be accessible to each element y in the
scope set. By adding the CoCon-predicate operation NOT, the semantics
are changed: each element x in the target set must be inaccessible to
each element y in the scope set. According to common BNF rules given

in section and section the privacy policy example of section
[2:2) can be expressed via the following ACCESSIBLE TO CoCon:

ALL COMPONENTS WHERE ‘Personal Data’ = ‘True’ MUST
NOT BE ACCESSIBLE TO ALL COMPONENTS WHERE ‘Workflow’
CONTAINS ‘Create Report’

The privacy policy example is mapped to predicate logic as follows:
e C(z,y) is defined as ‘z is accessible to y’.
e T(z) is defined as ‘x handles Personal Data’
e S(y) is defined as ‘y is used in the Create Report workflow’.

e Finally, the privacy policy is expressed as Va,y : T(z) A S(y) —
-C(x,y).

Is it possible to write down all requirements via CoCons? The simple an-
swer is: No. A context condition can be restricted to only select elements
of a specific element type. For instance, it can be restricted to select
nothing but components. A CoCon-predicate expresses a condition on
how two elements must relate. The expressiveness of a CoCon-predicate
depends on the range of (= the element type in focus of) its context con-
ditions. All elements of one element type share their type’s properties.
For example, all elements having the element type ‘component’ share the
type property ‘a component can have interfaces’. But, not all components
have the same interface. Therefore, a CoCon restricted to components
cannot express conditions on specific properties of one interface of one of
its constrained components. Instead, a CoCon only can express condi-
tions on the type’s properties of those element types to which its context
conditions are restricted. As soon as the context property values change
or elements are added or removed, the same CoCon can apply to other
elements that are unknown when specifying the CoCon. Besides its type
properties, all other properties of the constrained element are unknown.

The condition expressed via a CoCon-predicate does not focus on a single
type property. For example, a CoCon does not express the condition
‘the attribute age of a customer must have a value greater then 17’.
Many other constraint languages exist for expressing conditions on single
properties. On the contrary, CoCons CoCon-predicates are limited on
expressing how elements having certain type properties relate to each
other .

CoCons are predicate logic; therefore, their syntax is expressed in predi-
cate logic formulas. Anyone who prefers the Va,y : T(x)AS(y) — C(z,y)
syntax of classic predicate logic can use this syntax in order to define
CoCons. However, a requirements specification should serve as a docu-
ment understood by designers, programmers, and customers. Therefore,
an easy comprehensible syntax that assists English-speaking persons in
understanding the design rationale has been proposed in section |3.3.2

3 Context-Based Constraints (CoCons) 43

Different approaches exist for expressing predicate logic in plain English.
Any of them can be used instead of the syntax proposed in section [3.3.2}

3.3.7 Formalization of CPQL

In section[3.2.4] context properties have formally been defined. In section
[3:3:3] the context property query language CPQL for expressing context
condition has semi-formally been defined. This section maps the BNF
rules of the CPQL syntax to predicate logic formulas that refer to the
context property definition provided in section[3.2.4] According to section
[3:3:6] a CoCon can be expressed via the predicate logic formula Vz,y :
T(x) A S(y) — C(x,y). Let CV be any subset of the valid values
of the context property cp: CVP C VV., T(x) and S(y) are CPQL
expressions. They refer to CV°P sets as follows:

e The BNF rule ContextCondition can represent either T'(z) or
S()-

e The BNF rule ContextPropertyName defines all context property
names VI : ¢p; € CP.

e The BNF rule ContextPropertyValue defines all valid values V&, :
v, € VVep

e The terminal symbol ‘AND’ represents the conjunction (‘A’).
e The terminal symbol ‘OR’ represents the disjunction (‘V’).

e The condition ‘IS EMPTY’ on those values valuesc,(e) of the con-
text property cp that are associated with the element e is true if
valuesgy(e) = 0.

o The condition ‘values,(e) CONTAINS C'V P’ is true if values.,(e) C
cver.

o The condition ‘values.,(e) DOES NOT CONTAIN C'V°’ istrue if values.,(e) €
cver,

e The condition ‘values.,(e) EQUALS C'V’ is true if valuese,(e) =
cver.

o The condition ‘values.,(e) DOES NOT EQUAL CV P’ is true if values.p,(e) #
cver,

o The condition ‘values,,(e) INTERSECTS WITH CV P’ is true if values,(e)N
CVeP £).

e The condition ‘valuesc,(e) DOES NOT INTERSECT WITH CV’ is
true if values.,(e) N CVeP £ (.

Formalization Summary This section merges the definition of CoCons (in this section) and the
definition the context properties (in section : it defines how to refer
to context property values in a context condition of a CoCon. Hence, a
formal basis has been provided for each of the three replaceable concep-
tual modules depicted in figure [3.4] on page [33] These formal bases have
been defined in an artefact-type independent way.

3.3.8 Comparing Context-Based Constraints with Aspects

According to [KLM™97|, aspect-oriented programming languages
supplement programming languages with crosscutting concerns that are
called aspects. The aspects are developed separately from the normal

3 Context-Based Constraints (CoCons) 44

Join Cuts

Context-Based Point Cuts

source code and are weaved into the source code on compile time or even
dynamically at runtime. Even though CoCons can be implemented via
aspect-oriented frameworks, CoCons add the new notion of context-based
point cuts as explained next and in [Bib05].

A CoCon-predicate C(z,y) expresses a crosscutting concern. In terms of
AspectJ ([Asp]), C(z,y) expresses an advice. A place where to weave
in an advice is called join point in AspectJ. A pointcut defines the
conditions under which to weave in an advice — it defines a query for
selecting the join points. According to [SHUO4], defining the pointcuts
is independent design issue and can be accomplished separate from other
tasks such as modelling the advices. One advice affects several parts of a
software system. Handling crosscutting concerns via aspect-oriented pro-
gramming is well understood at source-code level or at runtime. However,
it is difficult to recognize or express aspects during requirements analysis
or at design level if we don’t know all implementation details yet. For
instance, it is difficult to determine at which places (= join points) which
aspect must be added to (= weaved in) the system.

Typically pointcuts select their join points by referring to source code de-
tails like names of classes or methods. But, Stakeholders who don’t know
anything about the source code should be able to understand and agree
with crosscutting requirements. Hence, my goal is to define pointcuts
without knowing the source code. I suggest to express aspects in a way
that is understandable for stakeholders and customers by using a new
notion of weaving. CoCons determine where to weave in which aspect by
considering the system’s context — their pointcuts are context-based.

CoCons express metadata-based aspects. But, CoCons stick to special
notions of pointcuts as discussed next and in [Biib05]. The places where
to weave in an aspect are expressed in many different ways by current
aspect-oriented languages. A few examples are the join point mecha-
nism of AspectlJ, the hyperspace mechanism, or the composition filtering
mechanism. Modelling a pointcut is basically about modelling a selec-
tion query. The query defines a condition for selecting join points. The
criteria in this condition refer to details that are part of the source code
— a pointcut query quantifies over properties of the source code.

All AOP systems provide a language to define pointcuts. The currently
most common way to capture join points utilizes the implicit properties of
program elements, including static properties such as method signature
and lexical placement, as well as dynamic properties such as control flow.

On the contrary, a CoCon defines its pointcuts via context conditions.
Such a context condition quantifies over context properties in order to se-
lect the join points. The context condition is a query that selects the join
points where to weave in the crosscutting concern C(xz,y). As explained
in section [3:2.1] the context doesn’t have to be part of the source code or
managed by the system. Likewise, [Lad05] discusses that signature-based
pointcuts cannot capture transaction management or authorization be-
cause there might be nothing inherent in an element’s name or signature
suggests transactionality or authorization characteristics.

Aspect-oriented software engineers have to define the relationships be-
tween aspects and their target artefacts. I suggest using context as
glue between advices and joining points for two reasons. Contexts are
implementation-independent and maybe express the intention why to
weave in an advice better than normal pointcuts referring to source code
properties. For instance, a business expert probably can tell whether an

3 Context-Based Constraints (CoCons) 45

CoCons vs. Aspects at
Source Code Level

CoCons vs. Aspects at
Design Level

advice must affect all system element in the context ‘sales department’
or all elements in the context ‘purchase workflow’, but this expert will
hardly know which pattern a methods or components should match in
order to be affected. Moreover, we can identify and refer to contexts even
before the first line of source code has been written down. For instance,
stakeholders can understand and negotiate the privacy policy of section
[2:2) without knowing which components actually exist already or will ex-
ist. As soon as some source code or binary is added to the system that
matches a CoCon’s context condition, it will be affected by the CoCon.

Even though CoCons can be implemented via aspect-oriented frame-
works, CoCons add the new notion of context-based point cuts as ex-
plained next. In [Lad05], several mechanisms are examined for referring
to metadata in pointcuts. In [SP02], aspects are expressed as C# custom
attributes. The aspects are weaved in using introspection and reflection
technique based on metadata in the .NET common language runtime.
Hence, recent research examines context-based aspects. CoCons add two
suggestions: we can express our context-based aspect in an abstract tex-
tual language that does not refer to the source code level at all. Further-
more, we can manage the metadata outside of the system/source code in
an external repository. We used external repositories in [LBBK03], [Rat04]
because we wanted our frameworks to work without modifying the com-
ponents.

With regards to considering aspects already during design, several in-
teresting approaches exist. In [AMBRO02], cross-cutting concerns are also
expressed at a high abstraction level during design. But, in this approach
the pointcuts are defined by listing the involved UML models. Instead,
a CoCon indirectly selects its constrained elements according to their
context properties.

A graphical way to model join points called ‘Join Point Designation Di-
agram’(JPDD) is introduced in [SHUO4]. JPDDs describe ‘selection pat-
terns’ which specify all properties a model element (i.e., UML Classifier
or UML Message) must provide in order to represent a join point. The
semantic of JPDDs is specified by means of OCL Expressions. JPDD
could be used to model CoCons if the context properties are expressed
as tagged values for each model element. But still, the JPDD approach
demands to change the UML metamodel each time when a pointcut con-
dition is changed or added. Furthermore, the JPDD community doesn’t
consider context in pointcuts yet.

In the hyperspace approach discussed in [TOHJ99], a hyperslice encap-
sulates a cross-cutting concern. The hyperslices are composed to form a
complete system: two hyperslices can be composed by a hypermodule,
which contains correspondence rules that determine at what points the
hyperslices should be joined. This approach is reflecte in the the Hy-
per/J framework. A CoCon expresses a hyperslice. But, CoCons have a
different notion of composition rules: In Hyper/J, the composition rule
indicates which elements in the hyperslices describe the same concepts,
and how these elements must be integrated. The elements describing the
same concept are selected via a query. For instance, the composition rule
could select ‘all elements having the same name’. An aspects typically
selects its join points according to their structural properties, like their
name. On the contrary, a CoCons selects its constrained elements (=join
points) according to their context properties.

An similar approach for composing (= weaving) hyperslices (=advices)

3 Context-Based Constraints (CoCons) 46

CoCons vs. Aspects at
Requirements Level

into UML models is presented in [Cla02]: so called composition relation-
ships identify overlapping elements in different UML models and specify
how to integrate these elements. Again, the composition relationships
discussed up to now don’t select the involved elements according to the
element’s context. But, they could because they are expressed in OCL
which can refer to tagged values which can express the element’s context.

According to [BKO05], we should avoid the word ‘all’ when stating a re-
quirement because it is an example of a hard to interpret requirement.
This may be right, but its also is an interesting requirement because it
may become a crosscutting requirement. A CoCon use the word ‘all’ to
express that there may be more than one join point for this requirement,
and it describes its involved system elements (= join points) indirectly via
their context. By using dangerous ‘all’ statements, we can write down the
crosscutting concern at one place in the requirement specification and,
thus, avoid redundancy which may impede us in evolving our system.

The Theme approach described in [BC04] identifies early aspects via lin-
guistic analysis of requirement documents and expresses these early as-
pects via UML. For each aspect, a list of all join points is compiled.
On the contrary, CoCons don’t list their constrained elements. Instead,
CoCons indirectly describe their join points via their context.

The PROBE framework described in [KR04] defines which aspect cross-
cuts which requirement by writing down composition rules. Again, these
rules list all affected requirements. On the contrary, a CoCon doesn’t list
each constrained element.

3.3.9 Research Related to Context-Based Constraints

Adaptive Approach

Goals

The new concept of CoCons is the indirect selection of the constrained
elements according to their context properties. For example, the di-
rect selection ‘componenty, componenty and component;’ can describe
the same system elements as “All components whose context property
‘Personal Data ’ has the value ‘True”. However, the indirect selection
automatically adapts to changed elements or context changes, while the
direct selection doesn’t. For instance, eventually a new component will
become part of the system after writing down the CoCon. The new
componentsy is not selected by the direct selection given above. On the
contrary, the indirect selection will automatically apply to components;
as soon as components;’s context property ‘Personal Data’ has the value
‘True’. The indirect selection expression must not be adapted if system
elements or their contexts change. Instead, the indirectly selected ele-
ments are identified by evaluating the context condition each time when
the system is checked for whether it complies with the CoCon. A Co-
Con can refer to elements that are unknown when specifying the CoCon
because the CoCon will apply to a new or modified element as soon as
the context property values of this element fit the CoCon’s context con-
dition. Therefore, CoCons are adaptive: they can adapt automatically
to changed system elements or to changed contexts because their con-
strained elements are identified newly each time the compliance of the
system with the CoCon is checked.

Goal-oriented requirements engineering is well established. According to
[vLOT]), goals denote the objectives a system must meet. Eliciting goals
focuses on the problem domain and the needs of the stakeholders, rather
than on possible solutions to those problems. An important benefit of
expressing high-level goals via CoCons is that a CoCon can indirectly

3 Context-Based Constraints (CoCons) 47

Traceability Links

Adaptive Traceability

select its constraint elements according to their context and, thus, trace
a high level goal to the system elements where the goal is operationalised.
The person who specifies a requirement via CoCons does not have to have
the complete (glass box view) knowledge of the system due to the indirect
association of CoCons with the system parts involved. It can be unknown
which element are involved in the goal when writing it down as a CoCon.

According to [Pin00], applying requirements traceability to a software
system starts with the following two tasks:

1. Traces Definition: It must be defined what (kinds of) objects
should be traced and what (kinds of) traceability links are needed
between those objects.

2. Traces Production: The traces are recorded by associating trace-
ability links with the relevant objects.

A traceability link is expressed by associating meta information with
an element. According to [RJ01], the following kinds of traceability links
exist:

1. A satisfaction link is defined between an element that represents
a constraint or goal, and another element that satisfies it.

2. A dependency link is defined between an element whose modifi-
cation will impact another element.

3. An evolution link is defined between an element that acts as a
replacement of another one, such that only the latter is still valid.

4. A rationale link is defined between an element and an explanation
of this element.

Context properties refine the notion of rationale links: a context link
is defined between an element and its context by associating the element
with context property values. This context link is a rationale link because
it explains the element. A CoCon is a satisfaction link because it expresses
a condition on how its constrained elements must relate to each other.
Up to now, satisfaction links tell which goals the element must fulfil to
which they are associated. On the contrary, a CoCon must not be directly
associated with its constrained elements. Instead, context property values
are directly associated with the elements. They do not tell which goals
the element must fulfil with which they are associated. Instead, they tell
the context of their element. A CoCon can express a goal by referring to
the element context. Hence, CoCons are indirect satisfaction links —
they provide a new notion of requirements traceability.

Higher-level requirements must be decomposed to a more refined level in
order to provide a link from initial requirements to actual system elements
that satisfy those requirements. During this recursive decomposition pro-
cess, low-level requirements are derived from higher-level requirements.
Both original an derived requirements are allocated to system elements.
According to [RJ0I], an requirements allocation table is the common
mechanism used to maintain this information. However, keeping track
of each individual requirement or element becomes more and more diffi-
cult if the number of requirements or elements grows. Furthermore, this
difficulty increases if the requirements or elements change frequently. In
case of large-scale or frequently changing systems, it takes much effort to
maintain an requirements allocation table that directly links requirements
to individual elements. Instead, CoCons enable to specify requirements

3 Context-Based Constraints (CoCons) 48

for possibly large groups of elements. They allow for indirect, adaptive
selection of all the elements involved in the requirement.

‘Tlities’ Recent work by both researchers ([CNYMO00]) and practitioners ([RR99])
has investigated how to model non-functional requirements and to express
them in a form that is measurable or testable. Non-functional require-
ments (also known as quality requirements) are generally more difficult
to express in a measurable way, making them more difficult to analyse.
They are also known as the ‘ilities’ and have defied a clear characterisa-
tion for decades. In particular, they tend to be properties of a system as a
whole, and hence cannot be verified for individual system elements. Most
of the CoCon-predicate proposed in this thesis specify non-functional re-
quirements. Via the two-step approach for defining the semantics, these
CoCon-predicates can express ‘ilities’ clearly. They are particularly help-
ful in expressing crosscutting ilities that apply to more than one system
element, because one CoCon can constrain several involved elements ac-
cording to their context property values.

xlinkit/CLIX The first order logic based rule language CLIX is now compared with
CoCons. The xlinkit framework as presented in [NEF01] monitors XML
artefacts for compliance with CLIX expressions. CoCons can select their
constrained elements via context conditions. Likewise, a CLIX rule can
indirectly select the constrained elements via XPath queries. However,
these XPath queries always refer to the artefact elements of the same
artefact, while context conditions don’t necessarily refer to the artefact
elements of the same artefact. Instead, context conditions refer to the
contexts of the artefact elements. It is possible to express CoCons via
CLIX if the context properties of the artefact elements are stored in the
monitored artefact. As explained in section the context properties
of an artefact element can be stored as ‘external’ metainformation in a
different artefact than their element. If the attribute values of an element
are not expressed in the checked artefact then XPath cannot refer to it.
Context conditions cannot be expressed in XPath if they refer to context
properties that are stored in another artefact.

A CoCon relates two sets of elements and defines a condition on each
related pair of elements. Likewise, CLIX rules can select two sets of ele-
ments via XPath and define a condition on each related pair of elements.
Two major differences between CoCons and CLIX exist, though. First, a
CLIX rule always defines action semantics: it describes what to do if two
elements violate or meet the CLIX rule. On the contrary, CoCons only
define constraints and ignore actions and events. The major difference is
the two-step semantics definition of CoCons: one CLIX rule applies to
artefacts of one type, while one CoCon can apply to artefacts of many
types. Thus, a CLIX rule can express the artefact-specific semantics of a
CoCon, but there is no additional abstraction layer in CLIX/xlinkit that
allows to express requirements for different artefact types.

Quick Tour g0t Chapter Section will discuss defining when to check a CoCon and what to do
if the CoCon is violated. Quick readers can skip this discussion of action
semantics and proceed with chapter [f] on page It will discuss how
to automatically detect requirement violations if the requirements have
been written down via CoCons.

3.3.10 The Fundamental Things Apply As Time Goes By

CoCons have been invented in 2000. In the meantime, some papers dis-
cussing CoCons have been published. Unfortunately, the concepts stayed

3 Context-Based Constraints (CoCons) 49

the same, but their names changed. This section explains, which old
names should not be used anymore. If you did not read the old papers,
skip this section.

‘Instructions’ became The most obvious change happened early: in [Biib00a] and [BiibOOb],
‘Constraints’ context-based ‘constraints’ were called context-based ‘instructions’. All
later publications use the term context-based ‘constraints’ (CoCons).
Sometimes, I used the term CoCon type instead of ‘CoCon-predicate’
in order to explain the concepts to people without mathematical back-
ground: some ‘types’ of CoCons express security requirements, while
other CoCon-predicates address other requirement issues. Different CoCon-
predicates have been proposed. Sometimes, the same CoCon-predicate
has been renamed. NOT ACCESSIBLE TO CoCons, for instance, have been
called InAccessibleBy CoCons. Their semantic, however, stayed the
same.

Moreover, the event and action semantics addressed in early CoCon pa-
pers have been separated from the CoCons and are now expressed via
CoCon-Rules as described in the next chapter.

3.4 Turning CoCons into CoCon-Rules by Adding Events And Actions
3.4.1 Introduction to Business Rules and Policies

(Business) Rule Systems analysts have long been able to describe an enterprise in terms
of the structure of the data that enterprise uses and the organization of
the functions it performs, but they have tended to neglect the constraints
under which the enterprise operates. Frequently these are not articulated
until it is time to convert the constraints into program code. While rules
that are represented by the structure and functions of an enterprise have
been documented to a degree, others have not been articulated as well,
if at all. A (business) rule is an expression that defines or constrains
some aspect of the business. It is intended to assert business structure or
to control or influence the behaviour of the business. It prevents, causes,
or suggests things to happen.

Policy A collection of rules is called policy. Requirements can be recorded via
policies. Policies are rules governing the choices in behaviour of a system
according to [SIo94].

Large-scale systems may manage many users and resources. In that case,
it is not practical to specify policies relating to individual elements. In-
stead, it must be possible to specify policies relating to groups of elements.
CoCons can specify rules for possibly large groups of elements.

3.4.2 Difference between CoCons and CoCon-Rules

CoCon-Rule = Event(s) + The previous sections discuss constraints. A constraint is an assertion
CoCon + Action(s) ([Mey88]), not an executable mechanism. It does do not tell what hap-
pens when it is violated or when the system complies with the constraint.

An expression that defines what to do if a condition is met or violated is

called a rule. Event Condition Action (ECA) rules are a well-known

approach for specifying rules. According to [WD93]|, they are typically ap-

plied in active databases. An ECA rule consists of three parts: the event

that triggers the validation of the system for compliance with the rule’s

condition. This condition can be defined by a constraint. A CoCon-

Rule is an ECA rule whose condition is defined by a CoCon. Moreover,

an action can be specified that must be taken if the rule’s condition is

3 Context-Based Constraints (CoCons) 50

(not) met. However, the action of a rule can result in side effects as
discussed next. A CoCon-Rule consists of a CoCon and additionally can
refer to events or actions. Therefore, a CoCon-Rule has almost the same
syntax as its CoCon. As long as the expression does not refer to events
or actions it is called context-based constraint or CoCon. As soon as it
refers to events or actions it is called CoCon-Rule. A CoCon-Rule can de-
fine when to check the system for compliance with the CoCon and what
to do if the CoCon is violated or if the system complies with the Co-
Con. After explaining the difference between CoCons and CoCon-Rules
in section the following sections define the semantics and syntax of
CoCon-Rules.

3.4.3 Limitations of Enriching CoCons with Actions and Events

Butterfly Effect

Directly Related Events

Side-Effects

Atomicity

A CoCon can be validated due to an event, and the result of its validation
can call for certain actions. However, not every reason for validating a
CoCon can be considered in a CoCon-Rule. Moreover, not every action
resulting from the CoCon validation should be stated in a CoCon-Rule.
The term chaos, with reference to chaos theory, refers to an apparent
lack of order in a system that nevertheless obeys particular laws or rules.
The two main components of chaos theory are the ideas that systems
- no matter how complex the may be - rely upon an underlying order,
and that very simple or small systems and events can cause very complex
behaviours or events. This latter idea is known as sensitive dependence
on initial conditions, a circumstance discovered by Edward Lorenz in the
early 1960s. The butterfly effect, first described by Lorenz at the De-
cember 1972 meeting of the American Association for the Advancement
of Science in Washington, D.C., vividly illustrates the essential idea of
chaos theory in his talk “Predictability: Does the Flap of a Butterfly’s
Wings in Brazil set off a Tornado in Texas?”’. The example of such a
small system as a butterfly being responsible for creating such a large
and distant system as a tornado in Texas illustrates the impossibility of
making predictions for complex systems; despite the fact that these are
determined by underlying conditions, precisely what those conditions are
can never be sufficiently articulated to allow long-range predictions.

A butterfly in brazil can cause a tornado in Texas or the violation of a
CoCon. But, not every cause for the CoCon violation can be considered
in a CoCon-Rule. For instance, a CoCon-Rule should not state to check
its CoCon ‘when a butterfly flaps in brazil’, even if the butterfly indi-
rectly causes the modification of the component. Instead, a CoCon-Rule
should only refer to those events that directly trigger the validation of its
CoCon. For instance, a CoCon-Rule can state to check its CoCon ‘when
a component is modified’.

Actions can result in unwanted side effects. For example, an action can
cause a tornado in Texas. Or it can remove one of the system’s com-
ponents. Performing actions can result in unreliable systems. On the
contrary, expressions in a declarative constraint language cannot have
side effects. The state of a system does not change because of evalua-
tion of a constraint. The person who specifies the constraint does not
decide how the violation of the constraint should be handled. This fa-
cilitates to divide and conquer problems. It results in a clear separation
between specification and implementation. Therefore, this thesis focuses
on constraints.

A CoCon-Rule can demand to take an action according to the rule’s

3 Context-Based Constraints (CoCons) 51

condition. when a CoCon-Rule is checked with the aim to perform an
action on it, the check and its corresponding action must be regarded as
one atomic action. If the context property values on which the CoCon-
Rule depends change during the evaluation of the CoCon’s action, the
outcome of that check is not reliable.

3.4.4 Referring to Events and Actions in CoCon-Rules

Events An event is a noteworthy occurrence according to [OMGO03b]. A CoCon-
Rule can state on which event the compliance of the system with the
CoCon is checked. For example, an event that possibly changes the con-
text property values that are checked in the CoCon’s context condition
can be named in the corresponding CoCon-Rule. Only events that can be
detected by the software system should be considered, because otherwise
the CoCon-Rule cannot be monitored automatically. Hence, a CoCon-
rule should refer to names of events that are raised by applications.

The two new CoCon attributes described here define actions that must
happen if a CoCon is (or is not) violated. Each attribute has a name and
one or more value(s).

COMPLIANCE-ACTION A CoCon can be turned into a CoCon-Rule by adding the attribute
COMPLIANCE-ACTION. It describes what action must be taken if
two elements are related via this CoCon and comply with the CoCon-
predicate. Its value depends on the software system artefact that is
checked for compliance with the CoCon.

VIOLATION-ACTION The attribute VIOLATION-ACTION describes what action must be
taken if two elements are related via this CoCon but don’t comply with
the CoCon-predicate. Its value depends on the software system artefact
that is checked for compliance with the CoCon. Two general values of
VIOLATION-ACTIONSs are proposed next that do not depend on the artefact
type or the abstraction level:

e The value ‘Ignore Conflicting Elements’ of the VIOLATION-ACTION
attribute defines that the system ignores the elements that violate
a CoCon.

e The value “Warn’ of the VIOLATION-ACTION attribute defines that
the user is notified of detected violations of a the CoCon. More
precise values of VIOLATION-ACTION, e.g. ‘warn system designers
via a pop up window and a fire-alarm sound’ can be used to define
who shall be notified and how the person(s) shall be notified.

IF-THEN-ELSE In regards to IF-THEN-ELSE expressions, the COMPLIANCE-ACTION is de-
fined in the THEN part, and the VIOLATION-ACTION is defined in the ELSE
part. Before defining the syntax for turning a CoCon into a CoCon-Rules,
general limitations of the defining events and actions are discussed next.

3.4.5 The Common CoCon-Rule Syntax

As explained in section the syntax of CoCon-Rules is almost the
same as the CoCon syntax defined in section Only two BNF rules
are added to the syntax definition:

3 Context-Based Constraints (CoCons) 52

Common Syntax of CoCon-Rules

CoConRule w= [‘ON’(ValidationEvent)+AND [OR]
CoCon [‘-’ (ActiomAttribute)+4ND]
ActionAttribute ::= ActionAttributeName ‘=’

(AttributeValue)Comma
ActionAttributeName= ‘COMPLIANCE-ACTION)|
“VIOLATION-ACTION °

Example A revisited According to common BNF rules given here, the privacy policy of section
2.2 can be turned into a CoCon-Rule by adding an action as follows:

ON Dial-Up ALL COMPONENTS WHERE ‘Personal Data’ = ‘True’ MUST
NOT BE ACCESSIBLE TO THE COMPONENT ‘WebServer’- VIOLATION-ACTION
= ‘Block Call’ .

4. Applying CoCons in Continuous Software Engineering

Structure of this Chapter This chapter discusses using CoCons after they have been written down.
First, section explains why to consider requirements as invariants.
The next sections discuss how to detect violated or contradicting CoCons
automatically. Two different kinds of detectable conflicts are discussed:
an CoCon-violation conflict occurs if an artefact element does not com-
ply with a CoCon’s CoCon-predicate on how it must (or must not) relate
to another artefact element as discussed in section Moreover, an
inter-CoCon conflict occurs if one CoCon contradicts another CoCon as
discussed in section Next, section introduces concepts for main-
taining context property values in system modifications because violated
or contradicting CoCons cannot be detected at all if they refer to wrong,
outdated, or missing context property values. Finally, section 4.4 outlines
proof-of-concept software tools.

4.1 Continuous Requirements Tracing

A software system is described in analysis level artefacts, in design level
artefacts, in source code level artefact, and in runtime artefacts. When
modifying one artefact, the system’s artefacts should stay consistent on
all abstraction levels. New methods and techniques are required to safely
transform the system’s artefacts without the unintentional violation of
existing dependencies or invariants. Absolute consistency, however, can
hardly be achieved because time pressure and limited resources often pre-
vent keeping track of all dependencies and invariants across all artefacts
on all abstraction levels when modifying the system. In spite it isn’t
possible to anticipate all consequences of a change, the consideration of
dependencies and invariants improves consistency in modifications. If one
element of one artefact at one abstraction level is modified, then this ini-
tial modification can have an impact on other elements both in the same
artefact and in other artefacts. Continuous software engineering aims to
lessen the chaos that results from ‘blind’ modifications as described by
Parnas in [Par94]:

Changes Can Cause Chaos “Changes made by people who do not understand the orig-
inal design concept almost always cause the structure of the
program to degrade. Under those circumstances, changes will
be inconsistent with the original concept; in fact, they will
invalidate the original concept. Sometimes the damage is
small, but often it is quite severe. After those changes, one
must know both the original design rules, and the newly in-
troduced exceptions to the rules, to understand the product.
After many such changes, the original designers no longer un-
derstand the product. Those who made the changes, never
did. In other words, nobody understands the modified prod-
uct.”

Change Propagation Successful software systems always evolve as the environment in which
these systems operate changes and stakeholder requirements change. There-
fore, managing change is a fundamental activity in requirements engineer-
ing. Change impact analysis is defined in [AB93], [AB98] as ‘the activity

33

4 Applying CoCons in Continuous Software Engineering 54

Domino Effect

Continuous Requirements
Tracing

of identifying what to modify to accomplish a change, or of identifying
the potential consequences of a change’. The prevailing work on change
impact analysis focuses on the source code level of not-component-based
systems. On the contrary, continuous software engineering focuses on
models of component-based systems.

According to [MB99], dependencies can be numerous for complex sys-
tems. Many kinds of existing dependencies can be obtained automati-
cally from source code via compiler theory, such as dependency analysis
or program slicing. For instance, figure shows a screenshot published
in [MB99] that depicts only an excerpt of only the call dependencies in
a small software system consisting of 15 classes and 2000 lines of code.

Figure 4.1: Excerpt of a Call Graph Depicting Dependencies Between
15 Classes

A change can result in many consequences because of to the ‘ripple’
([AB98, [QV94]) or ‘domino effect’ ([Ber(2]): due to dependencies, an
initial change at one place can require changes at other places which in
turn require changes in other places and so on. As soon as the depen-
dent element is modified, this modification might induce other changes
at other places. A sequence of induced modifications is called propa-
gation path. If many dependencies exist, the propagation path of an
initial modification can get long. The change impact of an initial modifi-
cation increases by the length of the resulting propagation path because
more components must be modified if the propagation path is longer.
Modifying many artefacts is expensive. Moreover, a common problem
in reengineering is the introduction of new faults as a side effect of a
modification. Hence, the domino effect of change propagation should be
stopped as soon as possible.

Section [3:3.9] has discussed that CoCons are traceability links. Hence,
they facilitate to monitor and control the impact of changes. According
to [Pal00], “traces allow to identify, when objectives change, which parts
of the system are still relevant, which are not”. CoCons can indirectly
select their constrained elements. This facilitates identifying ‘which parts
of the system are still relevant’ because the person that writes down the
changed objective via a CoCon does not need to know each relevant
element when writing down the CoCon. Instead, only the context in
which the change takes place must be known in order to identify the
constrained elements.

4 Applying CoCons in Continuous Software Engineering 55

CoCons define invariants for possibly large sets of elements. Change
impact can generally be reduced by defining invariants at many places
because each single invariant can stop change propagation. One CoCon
can constrain many artefact elements. Hence, one CoCon can stop change
propagation at many places.

Changes to requirements specifications include adding, changing or delet-
ing requirements. If a requirement is specified via a CoCon and this
requirement changes then the CoCon has to be changed. It is much
easier to change one CoCon expression then to change all the artefact-
type-specific invariants at all the corresponding elements of all artefacts
involved in the development process. Only one expression (the artefact-
type-independent CoCon) must be adapted if the corresponding require-
ment changes in order to be able to check the model, the configuration
files, or the components at runtime. Moreover, the requirement expres-
sion doesn’t have to be re-written if a different artefact type (or version)
is used. According to [GMTS], the ability to allow changes to any arte-
facts to be traced throughout the system is an important property of
any system description technique. An invariant specified via a CoCon
can be checked for different modelling languages, different programming
languages, different component models or different component platforms.

Requirements traceability is intended to ensure continuous alignment be-
tween stakeholder requirements and system evolution: after each mod-
ification, all the system artefacts should be checked for whether their
elements still comply with all the requirements or not. As discussed
above, limited resources typically prevent achieving absolute consistency.
A tool that facilitates to detect which artefact elements don’t comply
with which requirements helps to improve consistency, though. Tools
that can be applied without much effort support continuous require-
ments tracing better because the system artefacts can be checked more
frequently if each check takes less effort. It takes much effort to associate
each element with the relevant context properties. Therefore, section 4.5
will discuss how to maintain context property values in order to reduce
this effort. If the context property values are available then CoCons fa-
cilitate continuous requirements tracing because they can automatically
identify the elements involved in a change. They reduce the effort for
locating those elements that don’t comply with the requirements.

In order to support continuous requirements tracing via tools, two differ-
ent ways of checking a system for compliance with CoCons are examined
in this chapter. First, section [I.2] discusses algorithms for identifying
those artefact elements that violate a CoCon. Then, section |4.3|suggests
an algorithm for detecting whether one CoCon contradicts other CoCons.

4.2 Detect CoCon Violations

This section examines how to detect violated CoCons automatically.

4.2.1 CoCon-Violation Conflicts

As explained in section [3.3.6] a CoCon can be expressed via the predicate
logic expression Vz,y : T(z) A S(y) — C(z,y). In this expression, the
CoCon-predicate C(z,y) defines how the constrained artefact elements x
and y must relate to each other. A CoCon-violation conflict occurs
if the relation between the element x to another artefact element y does
not comply with the CoCon-predicate C(x,y). For instance, the privacy

4 Applying CoCons in Continuous Software Engineering 56

policy example given section demands that certain z must be inac-
cessible to certain y. The next section presents an algorithm that enables
software tools to monitor the system artefacts for CoCon violations.

4.2.2 The Detect-CoCon-Violations Algorithm

Complexity

This section presents a general algorithm for identifying CoCon-violation
conflicts. After presenting the algorithm, its complexity is discussed.

input : The finite set A containing all n elements ay,...,a,
of the checked artefact and the CoCon
Vae,y € A:T(x) AS(y) — C(x,y)

output: The binary result relation R : A x A containing those of pairs
of artefact elements that violate the CoCon

/* identify constrained elements */
foreach a; € A do
if a; fulfils the scope set context condition S(a;) then
add a; to the scope set SCOPFE
if a; fulfils the target set context condition T(a;) then
add a; to the targe set TARGET

/* check constrained elements */

foreach as € SCOPE do
foreach a; € TARGET do
if Cl(as,at) is violated according to the artefact-type-specific
Semanticsiﬁfﬂ-)actiType then
add the pair (as,a:) to the result relation R

Algorithm 1: Detect-CoCon-Violations

As input, algorithm [I] needs the artefact that shall be checked and the
CoCon that shall be checked for whether any of the artefact’s elements
violate it. In the ‘identify constrained elements’ loop, the algorithm
searches for any artefact elements that fulfil the CoCon’s context con-
ditions. In the next loop ‘check constrained elements’, each possible pair

of constrained elements is checked for whether it violates C(z,y). In

. . C(z, .
algorlthm Semantics A'r(‘fez})acthype represents a condition on how to

check to artefacts of a certain type whether the artefact elements x and
y comply with C(z,y). If the algorithm returns an empty result set of
pairs R then no conflicts were found. Otherwise, R contains the pairs of
those elements which violate the CoCon.

The set of artefact elements A contains n elements. Hence, the ‘iden-
tify constrained elements’ loop runs 2n times. If each context condition
check has linear complexity than the overall complexity for identifying
the constrained elements is O(n). If no constrained elements are identi-
fied then the Detect-CoCon-Violation algorithm ends without finding any
CoCon-violation conflict. Thus, the best-case complexity of algorithm
is O(n) if checking the context conditions S(z) and T'(z) has a linear
complexity.

If the ‘identify constrained elements’ loop finds any constrained elements
then the algorithm continues. Let s be the number of constrained scope
set elements and ¢ the number of constrained target set elements. The
‘check constrained elements’ loop runs s x t times. With each run, the
loop evaluates whether the current pair of constrained elements fulfils
the CoCon-predicate. The worst-case complexity occurs if all n artefact

4 Applying CoCons in Continuous Software Engineering 57

elements are contained both in the scope set and in the target set of
the CoCon. In that case, both s and t equal n — the ‘check constrained
elements’ loop runs n? times. Hence, the Detect-CoCon-Violations algo-

rithm has the worst case complexity of O(n?) if checking each pair of

C(z,y)

Arte fact—Type has a linear

constrained elements according to Semantics
complexity.

Pitfalls However, the complexity of algorithm [I] can grow out of hand for two
reasons. Checking the context conditions S(z) or T'(z) can have high
complexity if they refer to a complex context model and if the query
capabilities or their query language are unrestricted. Hence, I suggest
using context models and context conditions that together result in lin-
ear complexity. In regards to context models, I decided not to consider
the context of context (...of context) as explained in section [3.2.1] because
queries to such a recursive context model might have undecidable com-
plexity. Furthermore, section [£.5] will discuss which query capabilities are
not part of CPQL in order to stick to context conditions checks of linear
complexity.

Additionally, checking the constrained elements for whether they fulfil
the CoCon-predicate can have high complexity if its artefact-type-specific
Semanticsjﬁéﬁ’c)acthype are complex. In order to avoid complex CoCon-
predicates, I propose only using binary relations that relate two elements.
Using k-ary relations results in O(n*) complexity because every addi-
tionally related element calls for another nested loop within the ‘check
constrained elements’ loop. But, even checking binary relations can have
high complexity as explained next. A CoCon-violation conflict can only
be detected automatically if the artefact-type-specific semantics of the
checked CoCon-predicate are defined and computable. For instance, in
order to check a UML model for whether it complies with the privacy pol-
icy CoCon, the artefact-type-specific Semanticsy; 7 % Coesszble*m*y must

be defined as done in chapter@ Only those Semantios%fé%ct_mpe con-

ditions should be used whose computation has linear complexity because
Semanticsgf«fcj?jf)acthype will be computed s x ¢ times in the ‘check con-
strained elements’ loop of the Detect-CoCon-Violations algorithm. The
discussion on preventing non-linear complexity in artefact-type-specific
Semanticsiﬁfé%cthype definitions will continue in section where

an example is discussed in detail.

In regards to continuous software engineering, CoCons facilitate consid-
ering invariants in system modifications because software tools can use
algorithm [I| to automatically detect each artefact element that doesn’t
comply with the CoCons.

This section has discussed CoCon-violation conflicts, where artefact el-
ements violate a CoCon. The next section will examine inter-CoCon
conflicts, where one CoCon contradicts another CoCon.

4.3 Detect Contradicting CoCons
4.3.1 Inter-CoCon Conflicts

The CoCons or context properties of a system can change over time. A
new CoCon can be added to the system or an already existing CoCon
can be modified. This new or modified CoCon can contradict prevail-
ing CoCons. Moreover, each changed context property value can result
in contradicting CoCons, because a CoCon can newly (not) constrain

4 Applying CoCons in Continuous Software Engineering 58

the element having the changed context property value. A conflict be-
tween constraints arises if they express opposite conditions on the same
elements. Likewise, an inter-CoCon conflict occurs if two CoCons con-
tradict each other. This section discusses how to detect conflicts between
CoCons in order to protect the requirements expressed via CoCons from
unwanted violation. It defines general inter-CoCon conflict types that
apply to two CoCons of the same CoCon-predicate C(x,y). As explained
in section[3:3.6] a CoCon can be expressed via the predicate logic formula
Va,y: T(z) AS(y) — Clz,y).

NOP «— NOT Inter-CoCon The first inter-CoCon conflict type is called NOP < NOT conflict be-
Conflict cause it can occur if one CoCon has a NOT operation, while another CoCon
of the same CoCon-predicate does not have a CoCon-predicate operation

(no operation is abbreviated as NOP here).

NOP < NOT Inter-CoCon Conflict: The two CoCons
o Vr,y:Ti(x) ANSi(y) — C(z,y) and
o Va,y: To(x) A Sa(y) — ~C(z,y)
contradict each other if 3z, y : Ty (x) A Ta(x) A S1(y) A Sa(y).
Example If C(z,y) is defined as x MUST BE ACCESSIBLE TO y CoCon-predicate
then the NOP < NOT inter-CoCon conflict states that no element
x must both be ACCESSIBLE TO and NOT ACCESSIBLE TO any y. For

instance, following two CoCons can cause a NOP < NOT inter-CoCon
conflict:

CoCon 1: : The privacy policy of section [2.2] can be expressed in CCL as ALL
COMPONENTS WHERE ‘Personal Data’ = ‘True’ MUST NOT BE ACCESSIBLE
TO ALL COMPONENTS WHERE ‘Workflow’ CONTAINS ‘Create Report’

CoCon 2: : ALL COMPONENTS WHERE ‘Personal Data’ = ‘True’ MUST BE ACCESSIBLE
TO ALL COMPONENTS WHERE ‘Operational Area’ CONTAINS ‘Human
Resources’

CoCon 1 contradicts CoCon 2 if any component exists that both belongs
to the operational area ‘Human Resources’ and is used in the workflow
‘Create Report’.

NOP < ONLY The next two inter-CoCon conflict types take the CoCon-predicate oper-
Inter-CoCon Conflict ation ONLY into account. According to section the semantics of the
operation ONLY are expressed in two formulas: Va,y : T'(x) A =S(y) —
-C(z,y) and Vz,y : T(z) A S(y) — C(x,y). A NOP — ONLY inter-
CoCon conflict can occur if one CoCon without CoCon-predicate op-
eration (=NOP) contradicts another CoCon with the CoCon-predicate

operation ONLY:

NOP < ONLY inter-CoCon conflict: The two CoCons
o Va,y:Ti(x) ASi(y) — C(z,y) and
o Vz,y: To(zx) A =S(y) — ~C(z,y)
Va,y: Ta(z) A Sa(y) — C(z,y)
contradict each other if 3z, y : T1(x) A To(x) A S1(y) A =S2(y).
Example If C(z,y) is defined as x MUST BE ACCESSIBLE TO y CoCon-predicate

then the NOP < ONLY inter-CoCon conflict states that no element
x must be ACCESSIBLE TO y if x is not ONLY ACCESSIBLE TO y. For

4 Applying CoCons in Continuous Software Engineering 59

CoCon 3 : : ALL COMPONENTS WHERE ‘Personal Data’ CONTAINS ‘True’ MUST
ONLY BE ACCESSIBLE TO ALL COMPONENTS WHERE ‘Operational Area’

ONLY < ONLY
Inter-CoCon Conflict

Example

instance, the following CoCons can cause a NOP < ONLY inter-CoCon
conflict:

CONTAINS ‘Controlling’

CoCon 2 contradicts CoCon 3 if any component x handling personal
data is accessible to a component y that is used in the human resources
department but that is not used by the controlling department. In that
case, CoCon 3 demands that x must not be accessible to y because y is
not used by the controlling department. But, x must be accessible to y
due to the CoCon 2 - an inter-CoCon conflict.

ONLY < ONLY inter-CoCon conflicts can occur if one CoCon with
the CoCon-predicate operation ONLY contradicts another CoCon with the
CoCon-predicate operation ONLY:

ONLY <~ ONLY inter-CoCon conflict: The two CoCons

o Vu,y: Ti(x) A =S1(y) — —C(x,y)
Va,y: Ty (z) A S1(y) — C(z,y) and

o Va,y: Th(x) A —Sa(y) — —C(z,y)
Va,y: Ta(z) A Sa(y) — C(z,y)

contradict each other if 3z, y : T1(z) A To(z) A ((0S1(y) A S2(y)) V
(S1(y) A =S52(y)))-

If C(z,y) is defined as x MUST BE ACCESSIBLE TO y CoCon-predicate
then the ONLY « ONLY inter-CoCon conflict states that no element
x must be ONLY ACCESSIBLE TO y; if x is ONLY ACCESSIBLE TO any s
and yo is not part of the same scope set as y;. For instance, following
CoCon can cause a ONLY « ONLY inter-CoCon conflict:

CoCon 4: : ALL COMPONENTS WHERE ‘Personal Data’ CONTAINS ‘True’ MUST

‘NOT-SELF’ Inter-CoCon
Conflict

Example

ONLY BE ACCESSIBLE TO ALL COMPONENTS WHERE ‘Operational Area’

CONTAINS ‘Sales’

CoCon 4 contradicts CoCon 3 if a component y that is used either by
the controlling department or by the sales department is accessible to a
component x that handles personal data. — as long as y is not used in
both departments, one of the two CoCons is violated.

The ‘NOT-SELF’ inter-CoCon conflict occurs if the CoCon’s scope set
overlaps with the CoCon’s target set and if the CoCon-predicate is re-
flexive (Vz : C(x, x)).

‘NOT-SELF’ inter-CoCon conflict: The CoCon Vz,y : T(x) A S(y) —
-C(x,y) contradicts the proposition 3z : T'(x) A S(x).

ACCESSIBLE TO CoCons are reflexive, because a component always is
ACCESSIBLE TO itself. Moreover, the target set and the scope set of
ACCESSIBLE TO CoCons can overlap, because both sets can contain com-
ponents. If C(z,y) is defined as x MUST BE ACCESSIBLE TO y CoCon
then the ‘NOT-SELF’ inter-CoCon conflict states that no element z must
be NOT ACCESSIBLE TO itself.

CoCon 1 violates this inter-CoCon conflict if any component x handles
personal data and is used in the controlling department. In that case,
CoCon 1 demands that = cannot access itself. This is absurd. Hence, x
must be changed until it either handles personal data or belongs to the

4 Applying CoCons in Continuous Software Engineering 60

controlling department . It may not belong to both contexts. If it is not
possible to adjust the components accordingly then the system cannot
comply with this requirement.

Besides these four general inter-CoCon conflicts, CoCon-type specific
inter-CoCon conflicts exist as listed in chapter

4.3.2 The Detect-Inter-CoCon-Conflicts Algorithms

Complexity

More Algorithms

This section discusses algorithms for finding inter-CoCon conflicts. First,
the algorithm for detecting ‘NOP « NOT’ inter-CoCon-conflicts is pre-
sented and its complexity is examined. Afterwards, more algorithms for
detecting other inter-CoCon conflicts are discussed.

input : The finite set A containing all n elements aq,...,ay,
of the checked artefact and the two CoCons
Ve,y € A : Ti(zx) A Si(y) — C(z,y) (CoCony) and
Va,y € A: Ta(z) A Sa(y) — —C(z,y) (CoCong)

output: The set SCOPF containing those scope set elements that cause
a conflict between CoCon; and CoCony and set TARGET con-
taining those target set elements that cause a conflict between
CoCony and CoConsg

/* check Jx,y: Ti(z) ANTo(x) ASi(y) ASa(y) */
foreach a; € A do
if S1(a;) and S2(a;) then
add a; to the set SCOPE
if Ty (a;) and Ts(a;) then
add a; to the set TARGET
/* conflicts only exist if both result-sets are not empty
*
/
if TARGET is empty OR SCOPE is empty then
return two empty sets

else
return the two sets TARGET and SCOPE

Algorithm 2: Detect-NOP < NOT-Inter-CoCon-Conflicts

As input, algorithm [2] needs the artefact that shall be checked and the
two CoCons that shall be checked for whether they contradict each other.
Both CoCons must have the same CoCon predicate C(z,y). CoCong
has no CoCon-predicate operation, while the other CoCons has a NOT
(=) CoCon-predicate operation. The algorithm loops over all artefact
elements and searches if any of them fulfil the condition defined in section
for NOP <~ NOT inter-CoCon-conflicts. As a result, the algorithm
returns two sets TARGET or SCOPE which contain those elements that
cause a conflict between CoCon, and CoConsy. This result allows us to
trace which element is inconsistent to which other element. As in the
xlinkit framework (see section 7 this result could be expressed as
hyperlinks between inconsistent elements.

The set of artefact elements A contains n elements. Hence, 4n context
condition checks happen in the ‘check 3z, y : Ty (x) AT2 () AS1(y) AS2(y)’
loop of algorithm [2] If each context condition check has linear complexity
than the overall complexity of algorithm [2]is O(n).

Algorithm [2 only covers the first inter-CoCon conflict listed in section
3] Each other type of inter-CoCon conflicts needs an algorithm of

4 Applying CoCons in Continuous Software Engineering 61

its own. These additional algorithms are not defined here because they
are similar to algorithm [2] and can be generated from the inter-CoCon
conflict definitions listed in section 3.1l

Enhancements The performance of checking inter-CoCon conflicts can still be improved.
Instead of having one simple algorithm for each inter-CoCon conflict, all
inter-CoCon conflicts could be checked in one big algorithm that only
loops once over all artefact elements in order to compute all context
condition checks needed for any inter-CoCon conflict. Thus, the overall
number of context condition checks for testing all inter-CoCon conflict
types could be reduced. Moreover, the simple algorithms discussed here
only check a pair of two CoCons. If more than two CoCons of the same
CoCon-predicate exists the pair checking algorithms must be invoked sev-
eral times for each CoCon-pair combination. Within each invocation of
a pair-checking algorithm, the context conditions of both CoCons are
checked for all artefact elements. Again, the total number of context
condition checks could be reduced if those context condition checks done
in previous CoCon-pair-checks would not be repeated. However, the goal
of this section is not to develop the fastest solutions for specific appli-
cations in detail. All in all, the average complexity will always be O(n)
because each solution must iterate over all artefact elements. Instead, the
goal of this section is to provide an general detect-inter-CoCon-conflicts
algorithm in order to discuss in which way it differs from the general
detect-CoCon-violations algorithm presented in section [£.2.2]

Algorithm [I] vs. Both the Detect-CoCon-Violations algorithm (No and the Detect-
Inter-CoCon-Conflicts algorithm (No have one common limitation:
they both need the artefact elements in order to be run. It is not pos-
sible to detect CoCon-violations without artefact elements. Inter-CoCon
conflicts between two CoCons, however, can be detected without artefact
elements if the scope context conditions of both CoCons are identical
and the target context conditions of both CoCons are identical. In that
rare case, these equal context conditions will always select the same con-
strained elements. Therefore, an inter-CoCon-conflict can be predicted.
In most cases, two CoCons of one system will not have equal context
conditions for both their scope sets and their target set, though. Hence,
most inter-CoCon conflicts can only be detected if the CoCons constrain
any elements at all.

The first difference is obvious: algorithm [I| has an average complexity of
O(n?), while algorithm [2| has O(n). Detecting inter-CoCon conflicts is
faster than detecting CoCon-violation conflicts.

But, an even more important difference exists: algorithm|I|needs artefact-

specific semantics, while algorithmdoesn’t. In algorithrn S emanticsigft’z%cthype
represents a condition on how to check to artefacts of a certain type

whether the artefact elements z and y comply with C(z,y). Hence, algo-
rithm|1|has two limitations: Checking the artefact-specific S emanticsiﬁfﬁ){l ct—Type
for each pair of constrained elements reduces the overall performance of

algorithm Furthermore, algorithmsimply cannot be run if S emanticsiifé%ctimpe
C(z,y)

is unknown. And it can compute wrong results if Semantics 4, Fact—Type

is incomplete or wrong. On the contrary, algorithm [2| does not depend

(z,y)

rte fact—Type- It doesn’t get slower

on the artefact-specific Semanticsg
(z,y)

. e
if SemantzcsAT,tefact_Type

has a high complexity. It doesn’t compute
C(z,y)

Arte fact—Type 15 incomplete or wrong. And

wrong results if Semantics

finally, it can be run even if Semanticsifjﬁ}){miType is undefined. A

4 Applying CoCons in Continuous Software Engineering 62

software system consists of many different artefact types. Even if the
artefact-specific semantics of some artefact type used in the system are
undefined algorithm [2] still can detect inter-CoCon-conflicts and, thus,
identify contradicting requirements.

4.4 Proof-of-Concept Tools

According to [Pal00], traceability makes it feasible to examine the whole
set of objects and links for a project and thus permits conflict detection
and helps to ensure that decisions made later in the process are consistent
with earlier decisions. The previous sections have explained how to de-
tect both CoCon-violation conflicts and inter-CoCon conflicts. If a design
decision is expressed via a CoCon than a tool can automatically protect
it in later design decisions. Thus, CoCon can prevent unwanted ‘correc-
tions’ because they define invariants whose violation can automatically
be detected in a modification.

Tools can automatically identify the elements constrained by CoCons,
monitor them for compliance with the CoCons and notify the designer if
an element violates a CoCon or if a CoCon contradicts another CoCon:

Three prototypical proof-of-concept tools for monitoring software system
artefacts for compliance with CoCons exist:

e The open source CASE tool ‘ArgoUML’ already has a model-validation
mechanism called design critics (JRR98]). The CCL-plugin ([Ski0OL)
vAQ3, [Len03]) adds design critiques to ArgoUML that check the
compliance of a UML model with CCL expressions. The artefact-
type-specific semantics of CCL for UML models is defined in chapter
via OCL.

e The ‘EJB-Complex’ framework presented in [LBBK03| [Bil02) BL02,
LB02, Wan02] can validating Enterprise Java Beans for compliance
with CoCons at runtime. It uses ‘ECA plugin templates’ for defin-
ing the artefact-type-specific semantics of CCL for EJB systems.
Moreover, it uses ‘dynamic proxies’ for intercepting method invo-
cations. For instance, it can control which bean is allowed to invoke
which other bean according to the current context of the caller and
the callee.

e Instead of dynamic proxies as interception mechanism, we could
also use aspect-oriented programming as examined in [Rat04]. JBoss
AOP and AspectWerkz support metadata in their current versions.
The upcoming version of AspectJ will support metadata by modi-
fying the AspectJ language.

Different artefact-specific semantics for Java applications exist. But, the
stakeholders who have to understand and agree to the crosscutting re-
quirements typically don’t care for artefact-specific implementation de-
tails. Using CoCons, they only have to understand the abstract, artefact-
independent semantics and the system’s context.

4.5 Maintaining Context Property Values

A CoCon can refer to the context property values of an element in order
to check whether the element is constrained by the CoCon. This indi-
rect selection of constrained elements fails if the context property values
of an element are wrong or missing. Hence, it must be ensured that

4 Applying CoCons in Continuous Software Engineering 63

the context property values are always up-to-date and truthful. One ap-
proach for preventing illegal context property values has been introduced
in section the set of valid values (VV) must be defined for a
context property cp. However, there are many reasons why even a valid
context property value can be wrong: it can be outdated, wrong due to
incompetence, or even wrong with ill intent. The next sections discuss
mechanisms for improving the trustworthiness of context property values.

4.5.1 Type-Instance Constraint On Context Property Values

Types & Instances

Type Values Determine

Instance Values

Type-Instance Constraint

Example

New: Type Context

Managing Change

In UML ([OMGO3h]), a type is a (stereotyped) class that specifies a
domain of objects together with the operations applicable to the objects,
without defining the physical implementation of those objects. A type is
a blueprint of possibly many physical entities - these entities are called
instance of the type if their properties comply with their type definition.
In UML, an ‘instance’ is an entity that has unique identity, a set of
operations that can be applied to it, and state that stores the effects of
the operations.

The value of a context property can both be associated with a type or its
instance. For instance — oops, sorry: for example, the value can be asso-
ciated with a component type or with instances of this component type.
The context property values associated with an element type, however,
are not automatically associated with the instances of this element type
(or vice versa) because not all instances will be in situated in the same
situations. This section suggests how to relate the type context with the
context of the type’s instances.

The type-instance constraint on context property values applies
if the element e€;pstance € F is an instance of another element ey, € E:

Ualuescp (einstance) c /Ualuescp (etype)

Only the values v, associated with ey, are allowed to be associated
with €jnstance- These values vy, are a subset of the values in V'V
because only values in VV? can be associated with eyype.

For example, 10 different workflows called A, B, C, D, E, F, G, H, I,
and J may be performed by a system. Thus, context property name cp
= ‘Workflow’ has the valid values VVWorkflow — fA B C, D, E, F,
G, H, I, J }. If the designer associated only 5 of the 10 valid values
with the component type eype = “WebServer’ via valueswork fiow (etype)
= {A, B, C, D, E} then it is not allowed to associated the instance
€instance Of this component type with F, G, H, I, or J. At runtime, the
context property value of €;,stance must be a subset of the type’s values:
Ualuesworkflow(einstance) g {Aa Ba Ca D7 E}

None of the context models listed in section distinguish between the
context of types and the context of their instances. The type-instance
constraint on context property values defines a new notion of type con-
text: the context property values associated with a type characterize the
possible situations in which the type’s instances are (or will be) situated.

If a context property value newly is associated with any instance but
has not been associated with the corresponding type yet then the type-
instance constraint is violated: the new context property value either
cannot be associated with the instance, or it has to be associated with

4 Applying CoCons in Continuous Software Engineering 64

the type, too. Hence, the type-instance-constraint assists in keeping the
context property values of a model and its corresponding runtime system
consistent when modifying either the runtime system or the model.

4.5.2 Dependent Context Property Values

The context property value associated with an element can depend on
other influences. For example, a value can depend on the current state
of the associated element at runtime, or on other context property values
associated with the same element. These dependent context property
values are explained now, and a notation is defined for them.

Extracting Context If we know on which information the current context of an element de-
pends than we can determine this context of this element - we can au-
tomatically extract the context from those places where the information
is stored on which it depends. If the current value of an element’s con-
text is extracted automatically every time when the dependent context
is queried then nobody needs to set the context value manually. It will
always be available and up to date as long as the information on which
it depends is available and up to date.

Syntax If a context property value associated with an element depends on some-
thing, this dependency is written down in round brackets behind the
context property value’s association to the element. If several context
property values associated with the same element depend on the same,
they are grouped within curly brackets. BNF Rules concerning separa-
tors (‘,’(Comma), ‘OR’ or ‘AND’) are abbreviated: “Rule { Separator
Rule }*” is abbreviated as “(Rule)Separator?,

The Syntax for Dependent Context Property Values

ContextPropertyValue ::= (OneOrMoreValues [(‘(IN STATE’
NameOfState+¢omma)) | (((IF

BooleanCondition4ANP [OF))7y 1)

(‘?(CALCULATED VIA’ Algorithm ‘)’)
OneOrMoreValues == Value | ({" (Value)+Comma <}
BooleanCondition == ContextCondition | BooleanConstraint

Semantics A dependent value associated with an element is unused if it its depen-
dency doesn’t hold. Examples are discussed in this section. If the value
is in use then it reflects the current context of the element. If it is un-
used, it does not reflect the current context of the element because its
dependency does not hold. This syntax given above can express different
types of context property value dependencies. They are introduced now
via examples for an element e:

State-Dependent State-dependent context property values are defined via the terminal
symbol IN STATE. Other specification techniques, e.g. state diagrams or
Petri nets, are needed to define the values of NameOfState. If a context
property value is specified without a dependency, e.g. ‘Sell Product’ in
the following example, it is always associated with e regardless of e’s
state:

CurrentWorflow(e): ‘Add New Customer’(in state s4,85), {‘Delete
Customer’, ‘Modify Customer’}(in state s1), ‘Sell Product’

Condition-Dependent Condition-Dependent context property values are in use if the Boolean-
Condition evaluates to true. Two different kinds of boolean conditions
are proposed here.

4 Applying CoCons in Continuous Software Engineering 65

On the one hand, BooleanConstraint can refer to the current state of an
element via a Constraint. In contrast to the syntax for state-dependent
values explained above, the state of an element is not identified by the
state’s name here. Instead, the boolean constraint defines a condition
on which the associated element is checked every time the current value
of this context property for this element is queried. If the associated
element is an UML model element then the boolean constraint can be
specified via the Object Constraint Language OCL . For example, the
current context property value can depend on the attribute age of the
element e:

CurrentWorflow(e): ‘Add New Customer’(if self.age < 18), {‘Delete
Customer’, ‘Modify Customer’}(if self.age > 18)

On the other hand, the boolean condition can refer to other context
property values associated with the same element. Details on context
conditions, e.g. the ContextCondition syntax rule, have been defined in
section[3.3] A context-condition-dependent context property value is
only in use if the context condition matches to the other context property
values associated with the same element e. In the following example, the
value ‘Modify Customer’ is context-condition-dependent:

CurrentWorflow(e): {‘Delete Customer’, ‘Add New Customer’(if UserRole
EQUALS ‘Controller’), ‘Modify Customer’}(if UserRole EQUALS
‘Trader’), ‘Sell Product’

The value ‘Modify Customer’ only is in use if e is also associated with
the value ‘Trader’ of the context property ‘UserRole’.

Calculation-Dependent The current state of an element can also be defined via an algorithm ex-
pressed in the Algorithm rule. Calculation-dependent context prop-
erty values are calculated by the tool that checks the system for compli-
ance with the CoCon according to the given algorithm. The algorithm is
given within round brackets starting with CALCULATED VIA and refers to
the attributes or methods of the associated element e or other elements
that are associated with e. The algorithm defines how to calculate the
value, e.g. in the following example using OCL:

CurrentWorflow(e): 7(CALCULATED VIA self.GetWorkflowname()),
‘Modify Customer’

In this example, the current value of the context property‘Current Workflow’
is extracted by invoking the method ‘GetWorkflowname()’ of e. Calculation-
dependent values are similar to state-dependent values. The algorithm
refers to the state of instances of the associated element(s). In con-
trast to state-dependent values, the value resulting of the algorithm
is not pre-defined. In the condition-dependency example given above,
the value ‘Add New Customer’ is predefined and is in use if the con-
straint ‘self.age < 18’ is true. On the contrary, the value returned by
self. GetWorkflowname() is not defined yet. Hence, a question mark is
given instead of a value.

Trustworthiness If a dependency is defined for a context property value then this de-
pendency can be used to automatically extract the value. If a context
property value is extracted newly each time when checking its element
for compliance with a CoCon and if the (automatical) extraction mecha-
nism works correctly then the value is correct and up-to-date. Moreover,
the extraction mechanism ensures that a value is available at all. Hence,

4 Applying CoCons in Continuous Software Engineering 66

defining dependent context property values facilitates keeping the values
consistent.

Example: Configurations Different values of the same context property can be associated with the
same model element in different configurations. If the same system is
installed for different customers, each configuration describes the context
of one installation. This can be reflected in models by using depen-
dent context property values. Figure [£.2] illustrates how to model two
different configurations ‘BSH’ (Building Society Schwiibisch Hall) and
‘TUB’ (Technical University Berlin) via the context property ‘Configura-
tion’.

Workflow: Delete Contract, Create Contract, Integrate
Two Contracts (if configuration = '‘BSH'), |-——--—
Copy Contract (if configuration = 'TUB")

Contract
Management

Figure 4.2: Context Property Values Can Depend On The Current Con-
figuration

Dependent Context First, the context property ‘Configuration’ having the valid values ‘BSH’
Property Values and ‘TUB’ is defined. Then, context-condition-dependent values of the
property values ‘Workflow’ are associated with the model element e =‘Contract
Management’ as illustrated in figure[f.2] The two values ‘Delete Contract’
and ‘Create Contract’ do not depend on the current configuration - they
are in use for ‘Contract Management’ in every configuration of the sys-
tem. On the contrary, the value ‘Integrate Two Contracts’ is a dependent
context property value. It is only in use if the context property ‘Config-
uration’ has the value ‘BSH’ for the same element e =‘Contract Manage-
ment’. As well, ‘Copy Contract’ is a dependent value of ‘Workflow’.It is
only in use in the configuration ‘TUB’. Hence, different configuration of
the same model can be expressed.

4.5.3 Belongs-To Relations Result in Derived Context Properties Values

This section explains the difference between directly associated and de-
rived context property values. A concept for deriving values is informally
presented before it is defined formally.

Do We Need This? As soon as context property values are associated with different elements
that belong to each other, the mechanism introduced in this section fa-
cilitates managing the elements context property values. For example, a
component belongs to the computer to which it is deployed. This sec-
tion explains a mechanism that enables designers to associate one context
property value only once to the computer in order to associate it with all
components deployed to this computer automatically. This mechanism is
defined independent of specific artefact types. If you prefer to associate
the same context property value to each component on this computer
instead of attaching it once to the computer, you can skip this section.

Def. Derivable Context Not every context property is derivable. For example, the ‘price’ of a
Property computer can be associated with a computer via the context property

‘price’. This context property is not derivable because the values of ‘price’

associated with the parts may not be the same as the computer’s value.

Instead, the composite’s price is usually the sum of all its parts. Hence,

the value of ‘price’ of a part does not equal the price of its aggregate. On

the contrary, the values of derivable context properties apply to both the

4 Applying CoCons in Continuous Software Engineering 67

computer and to all its parts. A derivable context property is defined as
2-tupel (dcp, V'V 4P):

1. CP is the set of the names of all context properties in the system.

2. DCP C CP is the set of the names of all derivable context proper-
ties in the system.

3. dcp € DCP is the name of one derivable context property.

4. If the value(s) of the derivable context property dcp are associated
with the element e then the element(s) that belong to e derive e’s
value(s) of dep automatically due to a belongs-to relation as defined
next.

Def. Belongs-To Relation Let one element e, belong to another element e; with k # [. If a ‘belongs-
to relation is defined between e and e; then the context property values
associated with e; also apply to eg:

1. The values of the derivable context property dep € DC P associated

with the element e; € E are derived to another element e;, € E via

the directed and transitive belongs-to relation belo—n>gsg E x E.

. . belongs . belongs
An alternative notation for (eg, ;) € — is: e — ¢

2. If one element e; € E belongs to another element ¢; € E via

bel . .
er —% ¢, then ey derives the values of the derivable context prop-

erty dep € DCP from e; via the directed and transitive derivedvalues-
mapping derivedvaluesge, : E — PV,

derivedvaluesgep(€e) = U derivedvaluesgcp(e;) U directvaluesqep(e;)

belongs
€e;:e —> €4

3. When referring to the context property values of one element e it
won’t matter if the value is directly associated with e or derived
from another element to which e belongs. Hence, the directed and
transitive values-mapping : refers to both kinds of values:

dep
valuesgep : £ — pVV

valuesqep(e) = directvaluesgep(e) U derivedvaluesgep(e)

4. When defining a belongs-to relation then a belongs-to criteria

must be given in natural or formal language that describes why
belongs

€ — €.

When do Element belong-to Somehow, each element of a system belongs to each other element. The
each other? only reason for defining belongs-to relations is to derive context property
values, though. If a belongs-to relation is defined between all system

elements then one context property value associated with one element

is derived to all other elements. In such a system, CoCons cannot be

applied because a context condition either selects all elements or none.

Furthermore, even if two elements somehow belong to each other it is

wrong to define a belongs-to relation between them if the context property

values cannot be derived from one element to the other one. Therefore,

this thesis focuses on only two different kinds of useful belongs-to criteria:

4 Applying CoCons in Continuous Software Engineering 68

‘Directly Associated’ Values

‘Derived Values’

belongs
—

Type Type

Explicit Belongs-To
Relations

Benefit: Belongs-To
Hierarchy

e A belongs-to relation exists between elements that are part of each
other. For example, a component deployed on a computer is part
of this computer. Hence, the component belongs-to the computer
on which it is deployed.

e Moreover, a belongs-to relation exists between elements that invoke
each other at runtime — during the call execution, the invoked el-
ement derives the context property values of the calling element.
Modern middleware platforms, e.g. EJB or .NET support passing
the context from the caller to the callee during an invocation: the
called component can obtain information about the calling client
via the so-called ‘call context’.

Examples on refining these criteria for UML models of component-based
systems are discussed in [Bub02al.

Only context property values that are ‘directly associated with’ an ele-
ment via the directvalues., mapping are called directly associated values.
Values of a non-derivable context-property can only be directly associ-
ated.

Besides the context property values directly associated with an element
e, other derived values are associated with e via the derivedvalues.y(e)
mapping from every element e; to which e belongs. When implementing
a context-property-aware tool, e.g. a modelling tool, only the directly
associated values must be made persistent because the derived values
can be obtained from the associated values.

Both types and instances of a type can exist in a system. A belongs-

to relation between two types has the following impact on the instances
belongs

of these types. Let both elements e; and es be types. If e; — eo
then any instance of e; implicitely belong to an instance of e; if these
instances fit the belongs to criteria and if the criteria is automatically
decidable.

A metamodel contains types of model elements. The instance of a meta-
model element is a model element. Hence, implicit belongs-to relations
for UML diagrams are defined by specifying explicit belongs-to relations
between elements of the UML metamodel as demonstrated in [Bib02a].
The benefit of only explicitly specifying belongs-to relations in the meta-
model is that during design or in later abstraction levels, only implicit
belongs-to relations are used. This is less confusing.

The consequence of defining a belongs-to relation is that a context prop-
erty value associated with one element applies to others, too. If this value
changes, it must not be modified at every element involved. Instead, it
only must be modified at one element, and the change is automatically
propagated to the other elements that belong to this element. More-
over, belongs-to relations create a hierarchy of context property values

because they are transitive: if a belongs 3, belongs . then q "2 c. Thus,
a context property value associated with ¢ automatically is associated
with b and a. This belongs-to hierarchy provides an useful structure. It
enables the designer to associate a context property value with the el-
ement that is as high as possible in the belongs-to hierarchy. It must
be directly associated only once and, thus, is derived to probably many
elements. Hence, redundant and possibly inconsistent context property
values can be avoided, and the comprehensibility is increased. Belongs-To
relations can be used for automatically deriving context property values

4 Applying CoCons in Continuous Software Engineering 69

Example

from other system or model elements. Hence, they facilitate preventing
wrong context property values.

As discussed in section [3.2.4] inter-value constraints can prevent illegal
context property values. For example: an inter-value constraint can for-
bid that the context property ‘Personal Data’ can have both the value
‘True’ and ‘False’ for the same element. Of course, derived values must

not violate inter-value constraints, too. Let’s assume that a component

. belongs
installed in a container belongs to this container: Components =~ —s

Container. This belongs-to relation is expressed on type level - it im-
plicitely applies to all component instances and their container instances.
According to this belongs-to relation, all components deployed in a con-
tainer do not handle personal data if the value ‘False’ of the context
property ‘Personal Data’ is associated with their container. If any of
these component additionally has the value ‘True’ of the context prop-
erty ‘Personal Data’ then it violates the inter-value constraint stating
that no element can have both values ‘True’ and ‘False’ in the same time.
However, how can it be allowed to have both kinds of components in
the same container — those who handle personal data, and those who
don’t? If some components in the container handle personal data and
some others don’t, neither ‘True’ nor ‘False’ can be associated with the
container because each value is in conflict with some of the components in
the container. This example shall demonstrate the benefits of a belongs-
to hierarchy. Due to automatically derived values, illegal associations of
values with elements can be detected. Associating ‘False’ to a container
filled with both ‘False’ and ‘True’ components simply is bad design. If a
value is associated with an element then it applies to all elements that
belong to this element via a belongs-to relation. By associating ‘False’ to
the container, no component having ‘True’ is allowed in this container.
By associating no value to the container at all, both ‘True’ and ‘False’
are allowed values for components in this container. Hence, inconsis-
tent context property values (bad design) can be avoided via belongs-to
relations.

4.5.4 Outlook: Applying Context Properties in Continuous Software Engineering

Change Estimation

Context can Classify
Changes

Context properties allow subject-specific, problem-oriented views to be
concentrated on. If the context is known in which the modification takes
place and if the system’s elements are annotated via a corresponding
context property then this context property facilitates to identify those
elements that are likely to be involved in the modification. For instance,
only those elements belonging to workflow ‘X’ may be of interest when
modifying the workflow ‘X’. Of course, other elements not involved in
the workflow ‘X’ may be involved in the change due to dependencies
as explained in section Moreover, It may be necessary to modify
only a few of the elements needed in the workflow ‘X’ when changing
the workflow ‘X’. Thus, taking only the context property values of the
elements into account does not result in a precise change impact analysis.
Instead, it assists in estimating the change impact at first glance. If
only a few elements are needed in the workflow ‘X’ according to their
context property values then the change impact might be less compared
to a modification where many elements belong the context in which the
modification takes place.

According to [Par94], predicting changes is about as difficult as predicting
future. Still he thinks we could classify different kinds of change and then
assign a certain probability for each of these change types. We would

4 Applying CoCons in Continuous Software Engineering 70

then have to consider in advance at least the more probable changes.
Context properties can assist in classifying different kinds of changes by
estimating how probably a change will happen within each context is. For
instance, certain workflows might be bound to change frequently, while
others haven’t changed for years. By first annotating context property
values to the elements and then estimating change probability of the
context property values an architect can identify those elements that are
more likely to change than the others. However, this thesis does not
discuss probability models based on context in detail because the focus
of the thesis is on defining invariants. The context properties themselves
are not considered as invariants. Instead, the context-based constraints
that refer to these context properties are discussed here in detail. Based
on an understanding of the expected future evolution of the software
system, the software architect can employ various design solutions to
prepare for the future incorporation of new and changed requirements.
Context properties facilitate identifying the hot spots of possible future
evolution.

5. The Context-Based Constraint Language CCL

5.1 Overview on CCL

CoCon Family

Focus: Components

(NOT | ONLY)

This chapter introduces the Context-based Constraint Language CCL.
CCL has 22 CoCon-predicates for expressing requirements for component-
based systems. Only the artefact-type-independent semantics of these
22 CoCon-predicates are discussed in this chapter. The artefact-type-
specific semantics of these 22 CoCon-predicates for UML models will be
discussed in chapter [} Future research will probably identify additional
CoCon-predicates. Chapter [7] will present a method for identifying those
CCL CoCon-predicates that are relevant for a specific application. This
method will explicitly address adding new CoCon-predicates to CCL in
section [(.2.11

A CoCon family groups CoCon-predicates with related semantics. In
each of the oncoming sections, CoCon-predicates of one CoCon family
are introduced.

A system artefact can contain different element types. Most examples
given in the next sections only refer to one element type: ‘components’.

Each CoCon-predicate can combined with the CoCon-predicate operation
‘NOT’ or ‘ONLY’ after the keyword MUST. For example, the CoCon-
predicate ACCESSIBLE TO can either state that certain elements MUST BE
ACCESSIBLE TO other elements, or that they MUST NOT BE ACCESSIBLE
TO other elements, or that they MUST ONLY BE ACCESSIBLE TO other el-
ements. The abbreviation ‘(NOT | ONLY)’ is used to refer to all three
possible CoCon-predicate operations of one CoCon-predicate in the next
sections.

5.2 Access Permission CoCons

5.2.1 The Notion of Access Permission CoCons

Goal: Security

Constrained Element Types

CoCon-predicates of the accessibility family determine if and how ele-
ments can access other elements. Thus, they facilitate handling security
requirements.

The target set of an access permission CoCon can contain any element
type that can access other elements, such as ‘components’. As well, the
scope set of access permission CoCons can contain any element type that
can be accessed by other elements. However, nothing but ‘components’ in
the target sets and scope sets of access permission CoCons are discussed
here.

5.2.2 Access Permission CoCon-predicates

ACCESSIBLE TO CoCons

READABLE BY CoCons

A (NOT | ONLY) ACCESSIBLE TO CoCon defines that the compo-
nents in its target set are (NOT | ONLY) accessible to the components in
the scope set.

A (NOT | ONLY) READABLE BY CoCon defines that the components

71

5 The Context-Based Constraint Language CCL 72

WRITEABLE BY CoCons

EXECUTABLE BY CoCons

REMOVEABLE BY CoCons

in its target set are (NOT | ONLY) readable by any of the components in
the scope set.

A (NOT | ONLY) WRITEABLE BY CoCon defines that all the com-
ponents in its scope set are (NOT | ONLY) writeable by any of the com-
ponents in its target set.

A (NOT | ONLY) EXECUTABLE BY CoCon defines that all the com-
ponents in its scope set must (NOT | ONLY) be able to invoke the opera-
tions of any of the components in its target set.

A (NOT | ONLY) REMOVEABLE BY CoCon defines that all the el-
ements in its scope set must (NOT | ONLY) be removed by any of the
elements in its target set.

5.2.3 Detectable Inter-CoCon Conflicts of Access Permission CoCons

This sections discusses the detection of contradicting access permission
CoCons. The general inter-CoCon conflicts for CoCons having thesame
CoCon-predicate presented in section [1.3.1] apply to each access permis-
sion CoCon-predicate. This section discusses additional inter-CoCon con-
flicts for access permission CoCons of different CoCon-predicates.

Each of the CoCon-predicates READABLE BY, WRITEABLE BY, EXECUTEABLE
BY, and REMOVABLE BY is a refinement of the CoCon-predicate ACCESSIBLE
TO. For example, any element e; that is readably by another element ey,
also is accessible to e. Therefore, the four generic inter-CoCon conflicts
of section can be refined as follows: the generic inter-CoCon conflicts also
apply if one of the two CoCons Cy(x,y) or Cy(x,y) is an ACCESSIBLE
TO CoCon while the other one is a READABLE BY, a WRITEABLE BY, an
EXECUTEABLE BY, or a REMOVABLE BY CoCon. For example, the refined
generic inter-CoCon conflicts 1 states that no element e; can both be
ACCESSIBLE TO and NOT READABLE BY any eg.

5.2.4 Example for Using Access Permission CoCons

Privacy Policy

Reflexive CoCons

The privacy policy example given in section is discussed throughout
the thesis. It can be specified in CCL as:

ALL COMPONENTS WHERE ‘Personal Data’ EQUALS ‘True’
MUST NOT BE ACCESSIBLE TO
ALL COMPONENTS WHERE ‘Workflow’ CONTAINS ‘Create Report’

If the same component has both the value ‘Yes’ for its context property
‘Personal Data’ and the value ‘Create Report’ for its context property
‘Workflow’ then it belongs both to the target set and to the scope set
of the privacy policy CoCon. This is absurd, of course. It means that
this component cannot access itself. Such bad design is detected via the
‘NOT-SELF’ inter-CoCon conflict defined in section [£.3.1]

The ‘NOT-SELF’ inter-CoCon conflict applies because access permission
CoCons are reflexive (Va : C(z,z)). Every component involved in this
conflict must be changed until it either handles personal data or belongs
to the ‘Create Report’ workflow. It may not belong to both contexts. If
it is not possible to adjust the components accordingly then they cannot
comply with this requirement.

5.2.5 Related Research on Access Control Policies

Access Control Policies

According to [SdV01], a access control policy is concerned with per-

5 The Context-Based Constraint Language CCL 73

mitting only authorised users (subjects) to access services and resources
(targets). Many different approaches for expressing access control poli-
cies exist. Typically, the subjects can indirectly be selected via their role.
A role is a grouping mechanism similar to context properties: a role per-
mits the grouping of a set of permissions related to a position in an
organisation such as finance director or physician. It allows permissions
to be defined in terms of the position rather than the person assigned to
the permission. Indirect selection of subjects according to their role has
a long tradition in access control policies. CoCons enhance this notion.
They can regard the role of an element or a user as context and, thus,
select the constrained elements or users via their role. Additionally, they
can select elements or users according to their current context, e.g. their
current location, their hobby or their current workflow.

Access Permission CoCons can both indirectly select the subjects and
targets according to their current context. On the contrary, most access
control policies only consider the indirect selection of their subjects (the
users) via roles. One approach in which the targets can indirectly be
selected via roles is the policy core information model (PCIM) presented
in [MESWO0I]. In PCIM, a role represents a functional characteristic or
capability of a resource to which policies are applied, such as backbone
interface, frame relay interface, web-server, firewall, etc. Roles are used
as a mechanism for indirectly associating policies with the network el-
ements to which the policies apply. However, PCIM roles only refer to
internal context, while CoCons also refer to external context as explained

in section B3.2.1]

Ponder Another recent approach can indirectly select the constrained targets:
the Ponder language for specifying management and security policies is
defined in [Dam02]. Different families of policies can be expressed in Pon-
der. One of them are authorisation policies. They define what activities
a member of the subject domain can perform on the set of objects in
the target domain. For example, the privacy policy of section can be
defined in Ponder as:

inst auth- privacyPolicy {

subject /componentsUsedInTheWorkflowCreateReport;
action access() ;

target /componentsThatHandlePersonalData ;}

All in all, Ponder could be used instead of the context-based constraint
language CCL defined in [Biib02a] in order to express CoCons. Still, Pon-
der differs from CoCons in several ways. CoCons neither consider events
nor actions, while Ponder has operational semantics. Furthermore, Pon-
der uses domains (see section [3.2.6]) in order to select the object to which
a policies applies, while CoCons identify their constrained elements ac-
cording to their context properties. While a context property is a typed
attributes having a name and value(s), a domain is a flat string with
hierarchy. Moreover, Ponder cannot directly select the constrained ele-
ments, while CoCons can. And finally, Ponder has no two-step semantics
definition. Ponder misses this additional abstraction layer that allows to
handle requirements for different artefact types.

5.3 Communication CoCons

Communication CoCons describe how to handle communication calls.
Therefore, they are typically monitored and applied at runtime or during
configuration.

5 The Context-Based Constraint Language CCL 74

5.3.1 The Notion of Communication CoCons

Goal: Intercepting
Communication Calls

Constrained Element Types

If the context property values of the components involved in one com-
munication call, such as a remote procedure call or an asynchronous
message, fit to the context condition of a communication CoCon then
a context-aware service is invoked that checks whether the current
call complies with the communication CoCon. Details are described in
[LBBKO03, Bil02, Wan02]. The context-aware services suggested here han-
dle non-functional requirements. They don’t modify the call’s content.

The target set and the scope set of a communication CoCon can contain
any element type that can communicate with other elements. However,
nothing but ‘components’ in the target set or the scope set of communi-
cation CoCons are discussed here.

5.3.2 The Communication CoCon-predicates

CACHED WHEN CALLING

ENCRYPTED WHEN CALLING

ERRORHANDLED WHEN
CALLING

LOGGED WHEN CALLING

PROTECTED BY A
TRANSACTION WHEN
CALLING

SYNCHRONOUSLY CALLING

ASYNCHRONOUSLY CALLING

The family of communication CoCons consists of several CoCon-predicates:

A (NOT | ONLY) CACHED WHEN CALLING CoCon specifies that
(ONLY) a communication call from a component in its target set to a
component in its scope set must (NOT') be cached.

A (NOT | ONLY) ENCRYPTED WHEN CALLING CoCon spec-
ifies that (ONLY) a communication call from a component in its target
set to a component in its scope set must (NOT) be encrypted.

A (NOT | ONLY) ERRORHANDLED WHEN CALLING CoCon
specifies that (ONLY) a communication call from a component in its
target set to a component in its scope set must (NOT) be error-handled.

A (NOT | ONLY) LOGGED WHEN CALLING CoCon specifies
that (ONLY) a communication call from a component in its target set to
a component in its scope set must (NOT) be logged.

The following communication CoCon-predicates are typically applied dur-
ing configuration:

A (NOT | ONLY) PROTECTED BY A TRANSACTION WHEN
CALLING CoCon specifies that (ONLY) a communication call from a
component in its target set to a component in its scope set must (NOT)
be protected by a transaction mechanism.

A (NOT | ONLY) SYNCHRONOUSLY CALLING CoCon specifies
that (ONLY) the elements of the target set must (NOT) synchronously
invoke the elements in the scope set.

A (NOT | ONLY) ASYNCHRONOUSLY CALLING CoCon spec-
ifies that (ONLY) the elements of the target set must (NOT) asyn-
chronously invoke the elements in the scope set.

5.3.3 Detectable Inter-CoCon Conflicts of Communication CoCons

This sections discusses the detection of contradicting communication Co-
Cons. In addition to the general inter-CoCon conflicts for CoCons hav-
ing thesame CoCon-predicate presented in section this section in-
troduces inter-CoCon conflicts for communication CoCons of different
CoCon-predicates. The elements e; and e are target or scope set ele-
ments of communication CoCons with ¢ # k. An inter-CoCon conflict
exists if any of the following inter-CoCon conflicts is violated:

5 The Context-Based Constraint Language CCL 75

1. No element e; can both be SYNCHRONQUSLY CALLING and ASYNCHRONOUSLY
CALLING any ey

5.3.4 Examples for Using Communication CoCons

Logging The requirement “every remote procedure call (RPC) belonging to the
workflow ‘Integrate Two Contracts’ must be recorded in a log-file” can
be specified via the following communication CoCon:

ALL COMPONENTS MUST BE LOGGED WHEN CALLING ALL COMPONENTS WHERE
‘Workflow’ CONTAINS ‘Integrate Two Contracts’.

This communication CoCon defines that a context-aware logging-service
is invoked if a communication call belongs to the workflow ‘Integrate Two
Contracts’.

5.3.5 Related Research on Communication CoCons

Some of the communication CoCon-predicates reflect issues addressed in
policy-based resource management. However, most of the policy-based
management approaches use (event-)condition-action (ECA) rules. As
explained in section [3.4] CoCons don’t have operational semantics. They
can be turned into ECA rules by adding events and actions as described
in section [3:4] This thesis mostly ignores events and actions, though.

Path-Based Policy Language Network policies define the relationship between clients using network
resources and the network elements that provide those resources. The
main interest in network policies is to manage and control the quality of
service (QoS) experienced by networked applications and users, by con-
figuring network elements using policy rules. For example, the Internet
Engineering Task Force (IETF) policy model defined in [MESWO01] con-
siders policies as rules that specify actions to be performed in response to
defined conditions: if <condition(s)> then <action(s)>. There is
no explicit event specification to trigger the execution of the actions. In-
stead, the IETF policy model assumes that an implicit event such as a
particular traffic flow, or a user request will trigger the policy rule. Other
approaches to network policy specification try to extend the IETF rule-
based approach to specify traffic control using a concrete language. An
example is the path-based policy language (PPL) described in [SLXO01].
The language is based on the idea of providing better control over the traf-
fic in a network by constraining the path the traffic must take. However,
PPL expressions cannot indirectly select the constrained components as
CoCons can. Communication CoCons can select the constrained commu-
nication path according to the current context of the caller or the callee.
Therefore, a CoCon can apply to new communication paths if the con-
text of the caller or the callee changes. This adaptive approach is not
considered in PPL.

5.4 Distribution CoCons

5.4.1 The Notion of Distribution CoCons

Goal: Designing Distribution CoCons determine whether the target components have to
Distribution be available at the CoCon’s scope elements or not. The are introduced
in [BLOI]. A revised version has been published in [Biib03].

Constrained Element Types The target set of a distribution CoCon can contain any element type
that can be contained in other elements, such as ‘components’ can be

5 The Context-Based Constraint Language CCL 76

Availability

contained in ‘containers’. As well, the scope set of distribution CoCons
can contain any element type that can contain the other element type of
the target set. However, nothing but ‘components’ in the target sets and
‘containers’ or ‘computers’ in the scope sets of distribution CoCons are
discussed here.

Distribution CoCons facilitate designing distributed systems as follows.
‘availability’ and ‘load balance’ are contradicting distribution goals. Avail-
ability is optimal if every element is allocated to every computer because
each computer can still access each element even if the network or other
computers of the system have crashed. However, this optimal availability
causes bad load balance because each modification of an element must
be replicated to every other computer of the system. Typically, the lim-
its of hardware performance and network bandwidth don’t allow optimal
availability. Instead, a reasonable trade of between availability and load
balance must be achieved by clustering related data. Those elements that
are related should be allocated to the computers where they are needed
in order to improve their availability within this cluster.

5.4.2 Distribution CoCon-predicates

ALLOCATED TO CoCons

SYNCHRONOUSLY
REPLICATED TO CoCons

ASYNCHRONOUSLY
REPLICATED TO CoCons

A (NOT | ONLY) ALLOCATED TO CoCon defines that the components in
its target set must (NOT | ONLY) be deployed on the containers or the
computers in its scope set.

Replication is well known in distributed databases. As, e.g., explained in
[Har02], replication can be realised with current middleware platforms,
too. In this thesis, the term ‘a component is replicated” means that the
component’s state is serialized and the resulting data is copied. The
following CoCon-predicates handle replication.

A (NOT | ONLY) SYNCHRONOUSLY REPLICATED TO CoCon
defines that the components in its target set must (NOT | ONLY) be syn-
chronously replicated from where they are allocated to — specified via
ALLOCATED TO CoCons — to the elements in its scope set.

A (NOT | ONLY) ASYNCHRONOUSLY REPLICATED TO Co-
Con defines that the components in its target set must (NOT | ONLY)
be asynchronously replicated from their allocation — their allocation is
specified via ALLOCATED TO CoCons — to the elements in its scope set.

5.4.3 Detectable Inter-CoCon Conflicts of Distribution CoCons

This sections discusses the detection of contradicting distribution Co-
Cons. In addition to the general inter-CoCon conflicts for CoCons having
thesame CoCon-predicate presented in section £.3.1] this section intro-
duces inter-CoCon conflicts for distribution CoCons of different CoCon-
predicates. The elements e; and e are target or scope set elements of
distribution CoCons with ¢ # k. An inter-CoCon conflict exists if any of
the following inter-CoCon conflicts is violated:

1. No element e; may be both NOT ALLOCATED TO ej, and SYNCHRONOUSLY
REPLICATED TO eg.

2. No element e; may be both NOT ALLOCATED TO e, and ASYNCHRONOUSLY

REPLICATED TO eg.

3. No element e; may be both ALLOCATED TO e; and SYNCHRONOUSLY
REPLICATED TO ep.

5 The Context-Based Constraint Language CCL T

4. No element e; may be both ALLOCATED TO e and ASYNCHRONOUSLY
REPLICATED TO eg.

5. No element e; may be both SYNCHRONOUSLY REPLICATED TO ey
and ASYNCHRONOUSLY REPLICATED TO ey.

5.4.4 Examples for Using Distribution CoCons

‘Availability’ Example

Take, for instance, an ‘availability’ requirement stating that “all compo-
nents needed by the workflow ‘NewCustomer’ must be allocated to the
computer ‘Mainframe’ in order to be able to execute this workflow on this
computer even if the network connection fails”. This ‘availability’ require-
ment can be written down via CCL as follows: ALL COMPONENTS WHERE
‘Workflow’ CONTAINS ‘NewCustomer’ MUST BE ALLOCATED TO THE
COMPUTER ‘Mainframe’.

5.4.5 Related Research on Distribution and Network Policies

ADLs

Context-specific Clusters

One way in which we cope with large and complex systems is to ab-
stract away some of the detail, considering them at an architectural level
as composition of interacting objects. To this end, the variously termed
Coordination, Configuration and Architectural Description Languages fa-
cilitate description, comprehension and reasoning at that level, provid-
ing a clean separations of concerns and facilitating reuse. According to
[KM97], in the search to provide sufficient detail for reasoning, analysis
or construction, many approaches are in danger of obscuring the essen-
tial structural aspect of the architecture, thereby losing the benefit of
abstraction. On the contrary, CoCons stay on an abstract level in order
to keep my approach simple.

Aspect-oriented languages supplement programming languages with prop-
erties that address design decisions. According to [KLM™97], these prop-
erties are called aspects and are incorporated into the source code. Most
aspect-oriented languages do not deal with expressing design decisions in
during design. D?AL ([Bec98]) differs from the other aspect oriented lan-
guages in that it is based on the system model, not on its implementation.
Objects that interact heavily must be located together. D? AL groups col-
laborating objects that are directly linked via associations. It describes
in textual language in which manner these objects interact which are
connected via these associations. This does not work for objects that are
not directly linked like ‘all objects needed in the ‘Create Report’ work-
flow. Darwin (or ‘darwin’) is a configuration language for distributed
systems described in [RE96] that, likewise, expresses the architecture ex-
plicit by specifying the associations between objects. However, there may
a reason for allocating objects together even if they do not collaborate
at all. For instance, it may be necessary to cluster all objects needed
in a certain workflow regardless whether they invoke each other or not.
Distribution CoCons allocate objects together because of shared context
instead of direct collaboration. They assist in grouping related objects
into context-specific clusters and define how to allocate or replicate
the whole cluster.

After distributed applications became popular and sophisticated in the
80s, over 100 programming languages specifically for implementing dis-
tributed applications were invented according to [BST89]. Nevertheless,
hardly anyone took distribution into consideration already on the de-
sign level. Up to now, the rationale for distribution decisions is barely

5 The Context-Based Constraint Language CCL 78

recorded during the design and development of software system. A distri-
bution decision is typically taken into account during implementation and
is expressed directly in configuration files or in source code. But, when
adapting a system to new, altered, or deleted requirements, existing dis-
tribution decisions should not unintentionally be violated. By expressing
them in an implementation-independent way they can be considered at
different abstraction levels throughout the lifetime of a distributed sys-
tem.

5.5 Information-Need CoCons

The CoCon families presented in the previous sections all describe non-
functional requirements. CoCons are not restricted to expressing non-
functional requirements, though. This section will demonstrate that Co-
Cons also can express functional requirements. Therefore, it ends with
an additional subsection that discusses appropriate events and actions.

5.5.1 The Notion of Information-NNeed CoCons

Goal: Information Supply

Information Need CoCons

The central problem of information supply today is no longer quantity
but quality. The individuals are only interested in a tiny fraction of the
available data. In order to deliver the right information to a user when
it is required and where it is required, the information need of the user
must be defined. This section suggests to declaratively define information
need via information-need CoCons. They can specify which users are (or
are not) interested in which documents depending on the current context
of the users or documents.

The information need of users can change according to the current context
of the users or the documents. In order to provide the right information
to the user where needed and when it is required, the definition of ‘who
must be notified of what’ should consider the current context of users
and documents. Information-Need CoCons specify which elements are
interested in which elements depending on the current context of the
elements. Moreover, they specify with elements are as interesting as
other elements.

5.5.2 The Information-Need CoCon-predicates

NOTIFIED OF CoCons

AS INTERESTING AS
CoCons

AVAILABLE TO ANYONE
INTERESTED IN CoCons

One user can be interested in several documents possibly not stored in
the same place, repository, or directory. Moreover, one document can
be interesting for several possibly unrelated users. An information-need
CoCon can indirectly select the constrained users and documents via their
metadata. The family of information-need CoCons consists of the several
CoCon-predicates.

A (NOT | ONLY) NOTIFIED OF CoCon specifies that the users in its tar-
get set are (NOT | ONLY) interested in the documents in its scope set
— the target set users must (NOT | ONLY) be notified of the scope set
documents.

A (NOT | ONLY) AS INTERESTING AS CoCon specifies that any document
in its target set is (NOT | ONLY) as interesting as any scope set document.
It is bi-directional (symmetric)— whoever is interested in its target set
documents is also (| NOT | ONLY) interested in all its scope set documents
and vice versa.

A (NOT | ONLY) AVAILABLE TO ANYONE INTERESTED IN CoCon speci-

5 The Context-Based Constraint Language CCL 79

fies that any document in its target set must be (NOT | ONLY) be avail-
able to anyone interested in any scope set document. In contrast to AS
INTERESTING AS CoCons, the AVAILABLE TO ANYONE INTERESTED IN Co-
Cons are unidirectional — whoever is interested in its scope set docu-
ment(s) is also | (NOT | ONLY) interested in all its target set documents,
but not vice versa.

AS INTERESTED AS A (NOT | ONLY) AS INTERESTED AS CoCon specifies that any user in its
CoCons target set is (NOT | ONLY) interested in the same documents as any user
in the scope set. It is bi-directional (symmetric).

NOTIFIED OF THE SAME AS A (NOT | ONLY) NOTIFIED OF THE SAME DOCUMENTS AS CoCon speci-
CoCons fies that any user in its target set is (NOT | ONLY) interested in the same
documents as any user in the scope set. In contrast to AS INTERESTED AS
CoCons, the NOTIFIED OF THE SAME DOCUMENTS AS CoCons are uni-
directional — they do not define that the users in their scope sets are
interested in the same documents as the target set users.

Ignoring Either Users or An NOTIFIED OF CoCon defines who is (not) interested in what. Its tar-
Documents get set contains the interested users (who). Nevertheless, if it doesn’t
matter who is interested then it can be ignored when expressing infor-
mation need. Only NOTIFIED OF CoCons define who is (not) interested
in what. The other CoCon-predicates discussed here express simplified
information need:

e Both AS INTERESTING AS CoCons and AVAILABLE TO ANYONE IN-
TERESTED IN CoCons do not define who is interested in the doc-
uments in their target or scope sets. If no NOTIFIED OF CoCon
defines who is interested in these documents then simply all users
of the system must be notified.

e Both AS INTERESTED AS CoCons and NOTIFIED OF THE SAME AS
CoCons do not define what documents are interesting for the users
in their target or scope set. If no NOTIFIED OF CoCon defines in
what documents these users are interested then these users must
simply be NOTIFIED OF all documents managed by the system.

I recommend focusing on NOTIFIED OF CoCons when specifying informa-
tion need. The other CoCon-predicates should only be used to extend
information need defined via NOTIFIED OF CoCons.

Constrained Element Types The target set of an NOTIFIED OF CoCon can contain any element type
that can be interested in information. Typically, the target set contains
users or components. The scope set of an information-need CoCon con-
tains any element type in which someone or something can be interested,
like documents or business types. In case of an AS INTERESTING AS Co-
Con or an AVAILABLE TO ANYONE INTERESTED IN CoCon, the target set
and the scope set must contain elements of only one type. This element
type usually is a document.

5.5.3 Detectable Inter-CoCon Conflicts of Information-NNeed CoCons

This sections discusses the detection of contradicting information-need
CoCons. In addition to the general inter-CoCon conflicts for CoCons
having thesame CoCon-predicate presented in section this section
introduces inter-CoCon conflicts for information-need CoCons of different
CoCon-predicates. The elements e; and e are target or scope set ele-
ments of information-need CoCons with ¢ # k. An inter-CoCon conflict
exists if any of the following inter-CoCon conflicts is violated:

5 The Context-Based Constraint Language CCL 80

1. If the element e; must be NOTIFIED OF ej, and ey, is AS INTERESTING
AS e, then e; must be NOTIFIED OF e,,, too.

2. If the element e; must be NOT NOTIFIED OF ej and e is AS INTERESTING
AS e,, then e; must be NOT NOTIFIED OF e,,, too.

3. If the element e; must be NOTIFIED OF e and e,, is NOT AS INTERESTING
AS e then e; must not be NOTIFIED OF e,,.

4. If the element e; must be NOTIFIED OF ej and ey, is AVAILABLE TO
ANYONE INTERESTED IN ej then e; must be NOTIFIED OF e, too.

5. If the element e; must be NOT NOTIFIED OF e; and ey is AVAILABLE
TO ANYONE INTERESTED IN e, then e; must be NOT NOTIFIED OF
€m, t00.

6. If the element e; must be NOTIFIED OF e and e,,, is NOT AVAILABLE
TO ANYONE INTERESTED IN ¢j then e; must not be NOTIFIED OF

€m-

7. If the element e; must be AS INTERESTING AS e then e; must not
be NOT AVAILABLE TO ANYONE INTERESTED IN e

8. If the element e; must be NOTIFIED OF e and e,,, is AS INTERESTED
AS e; then e, must be NOTIFIED OF ey, too.

9. If the element e; must be NOT NOTIFIED OF e and e; is AS INTERESTED
AS e, then e, must be NOT NOTIFIED OF eg, too.

10. If the element e; must be NOTIFIED OF e¢j and e, is NOT AS INTERESTED
AS ¢; then e,, must not be NOTIFIED OF e.

11. If the element e; must be NOTIFIED OF e, and e, is NOTIFIED OF
THE SAME DOCUMENTS AS e¢; then e, must be NOTIFIED OF e,
too.

12. If the element e; must be NOT NOTIFIED OF e, and e is NOTIFIED
OF THE SAME DOCUMENTS AS e, then e; must be NOT NOTIFIED
OF e,,, too.

13. If the element e; must be NOTIFIED OF ey and e, is NOT NOTIFIED
OF THE SAME DOCUMENTS AS e then e; must not be NOTIFIED OF

€m-

14. If the element e; must be AS INTERESTED AS ej then e; must not
be NOT NOTIFIED OF THE SAME DOCUMENTS AS e

5.5.4 Examples for Using Information-Need CoCons

E-Learning All students who attend a lecture should read those books that fit to the
topic of the lecture:

ALL USERS WHERE ‘Role’ CONTAINS ‘Student’
MUST BE NOTIFIED OF
ALL DOCUMENTS WHERE ‘Topic’ INTERSECTS WITH ‘User.Lecturetopic’

Dot-Path-Notation In this example, the Dot-Path-notation explained in section is used
in the scope set context condition in order to refer to the ‘other’ con-
strained element. A document is selected by this context condition if at
least one of its associated values of the context property ‘Topic’ equals
the ‘Lecturetopic’ values associated with the user. A CoCon defines a re-
lation between any element of its target set and any element of its scope
set. Usually, the context condition for selecting the elements of one of

5 The Context-Based Constraint Language CCL 81

Mobile Devices

Navigation

these sets only checks the values associated with the currently checked el-
ement. In this example, however, the prefix ‘User’ defines that this scope
set context condition does not refer to the document’s context property
values. Instead, it refers to the context property values associated with
the related element of the ‘other’ set - the user.

Mobile services and mobile applications should reflect the current con-
text. In this example, the current location of the mobile device and
the user profile of the person who uses the device are considered via an
information-need CoCon:

ALL USERS MUST NOT BE NOTIFIED OF ALL DOCUMENTS WHERE
‘DOCUMENT .DescribedCity’ DOES NOT EQUAL ‘USER.Location.City’
‘DOCUMENT.Genre’ DOES NOT INTERSECT WITH ‘USER.Hobby’.

It filters the right information out of a flood of data. Documents are
ignored if they don’t match with the user’s hobbies or don’t apply to the
city in which the user currently is located.

In this example, the Dot-Path-notation is used in the scope set context
condition in order to navigate. As explained in section [3.3.4] navigation
is only possible if an association between the elements is defined. The
scope set context condition checks the values of ‘City’ associated with
the user in the role of ‘Location’.

5.5.5 Related Research on Information-Need CoCons

User Models

Conceptual Clusters

How do we know who needs to be notified of what? This question can be
answered by listing the interesting documents for each user in a so called
user model ([McT93]). User models are typically based on profiling user
interests in order to distribute messages to interested users. According
to [SKKO1], user-adaptive systems typically learn about individual users
by processing observations about individual behaviour. However, it may
take a significant amount of time and a large number of observations to
construct a reliable model of user interests, preferences and other char-
acteristics. Additionally, it is useful to take advantage of the behaviour
of similar users as in the collaborative filtering approach ([KMM™97]) or
recommender systems ([RV97]). Many other approaches exist to extract
user’s interest from the content of the visited web pages or documents in
order to recommend other pages or documents that are relevant to her
current interests. On the contrary, this section presents a mechanism for
declaratively defining who must (not) be notified of what. This declar-
ative approach cannot replace learning from user behaviour. Instead,
information-need CoCons enable us to combine automatically extracted
and intellectually defined knowledge about the information need of users.

Building user models is difficult, though, because it is not easy for users
to specify what they are interested in according to [SK92]. As a typical
approach for user modelling, conceptual clusters ([Mun97]) classify doc-
uments based on the terms they contain and queries are processed based
on the terms specified by the user. One of the major obstacles is the
vocabulary problem described in [CSNT96]: The terms contained in the
documents available are different from those the user would use to specify
his or her interests. Information-Need CoCons, however, do not neces-
sarily refer to the content of the interesting document. Instead, they can
refer to its context. The context property values of a document can use
terms found in the document, but they also can describe the context in
which the document is used even if this context is not mentioned in the

OR

5 The Context-Based Constraint Language CCL 82

document at all. For instance, they can describe in which workflows the
document is used. Moreover, they can describe the document’s context
(or content) in terms used by the user.

Organizational Concept Recent approaches, like the organizational concept space ([ZKS00Q]), also
Space partly consider context by incorporating organizational information in
the user model. An interest matrix is used with documents as one di-
mension and user as the other. The entries of the matrix indicate the
level of interest of the individual user in the individual document. On
the contrary, information-need CoCons relate groups of users to groups of
documents. They adapt more easily to new or changed users, documents
or context because every new or changed element involved can automati-
cally be selected according to its context. Information-Need CoCons can
be combined with the interest matrix as follows: the entries of the matrix
must correspond to the CoCon(s). If an information-need CoCon identi-
fies that a certain user must (not) be notified about a certain document
then the corresponding entry in the matrix can be checked for compli-
ance with the CoCon. An entry in the matrix can contradict a CoCon.
For instance, user_15 might be interested in document_52 according to
the matrix, while the CoCon states that this user must not be notified
of this document. In case of such a conflict, either the matrix or the
CoCon should be adapted. The matrix is adapted by changing those en-
tries that contradict the CoCon. This mechanism can assist in filling the
matrix with entries at all, because one CoCon can constrain many users
or documents and, thus, can set the value of many entries in the matrix.

One limitation of learning from user behaviour is that the most popular
document may not be interesting for every individual. In addition, a
document that is very interesting for one user may be boring for all other
users. An automatically extracted user model only considers the ant
trails where many users share an interest. An information need CoCon-
Rule, on the contrary, can also take unconventional information-need into
account.

Up to now, no policy language for expressing information need exists.
One reason for it is the huge number of rules needed if every individ-
ual document and individual user shall be considered. In contrast, one
CoCon-Rule can express information-need for possibly large sets of users
and documents. Future research could examine how to combine declara-
tive specification of information need policies with user models build on
observation of individual user’s behaviour. For example, the action-clause
of a corresponding CoCon-Rule can define to set the interest matrix entry
to a certain value if it does not comply with the CoCon.

5.5.6 Information-NNeed CoCon-Rules

The previous sections have showed how to define information need via
constraints. Identifying information need is one thing, and satisfying
the need is another. Nevertheless, constraints do not tell what happens
when information need exists according to the constraint as discussed in
section [3.4l This section outlines the consideration of events and actions
in information-need CoCon rules.

The aim of | information logistics|is to provide the right information when
it is required and where it is required. The right information is described
in the scope set specification of an information-need CoCon. It can be
defined via a context condition that selects the right elements according
to their current context.

http://www.informationslogistik.org

5 The Context-Based Constraint Language CCL 83

The question when the information is required can be answered in four
ways. First, the corresponding CoCon-Rule’s COMPLIANCE-ACTION at-
tribute can describe when and how to deliver the information, for in-
stance, it can demand to ‘deliver the information immediately via SMS’.
Second, an event that triggers the information need can be specified.
Third, the user’s context can cause information need. For example,
users WHERE ‘Local Time’ = ‘08:15’ can be specified to be interested.
Thus, the users can be selected via a context condition that describes
when information need exists. Fourth, the time of interest can depend
on the interesting documents. Hence, a context condition can refer
to the time context of an interesting document, like DOCUMENTS WHERE
‘Publication Year’ = ¢2002°.

Likewise, the question where the information is required can be specified
in a context condition that describes where the interested user requires
information or where the interesting documents reside. In addition, the
attribute COMPLIANCE-ACTION can specify where the information must be
delivered, and the event clause can define at specific places at which the
users and documents must be checked for whether which CoCon applies
to them.

5.6 Inter-Value CoCons

Inter-Value CoCons specify dependencies between context property val-
ues of an element.

5.6.1 The Notion of Inter-Value CoCons

Goal: Dependencies between Inter-Value CoCons express inter-value constraints (see section .
Context property values They define dependencies between the context property values of an ele-
ment and, therefore, facilitate keeping the values consistent. Inter-Value
CoCons specify that an element having certain context property values

must or must not have certain other context property values.

5.6.2 The Inter-Value CoCon-predicates

The family of inter-value CoCons consists of the following CoCon-predicates.

THE SAME AS CoCons The target set of a (NOT) THE SAME AS CoCon must (NOT) contain
the same elements as its scope set. It is bi-directional (symmetric): the
target set elements must (NOT) fulfil the scope set’s context condition
and the scope set elements must (NOT) fulfil the target set’s context
condition.

FULFILLING THE CONTEXT This is an uni-directional inter-value CoCon. For instance, all books
CONDITION OF CoCons where the ‘author’= ‘J.K. Rowling’ must have the ‘genre’ = ‘fantasy’,
but not all books of the of the ‘genre’ = ‘fantasy’ are written by the
‘author’= ‘J.K. Rowling’. The elements of the target set of a (NOT)
FULFILLING THE CONTEXT CONDITION OF CoCon must
(NOT) fulfil the scope set’s context condition. However, the scope set
elements are not matched with the context condition of the target set as
with THE SAME AS CoCons.

FULFIL THE CONTEXT The syntax of an FULFILLING THE CONTEXT CONDITION OF CoCon con-

CONDITION CoCons tains an superfluous part. In the following example, the superfluous
parts is printed in ITALICS: ALL COMPONENTS WHERE X = 3 MUST BE
FULFILLING THE CONTEXT CONDITION OF ALL COMPONENTS WHERE

5 The Context-Based Constraint Language CCL 84

Y = 2 can be abbreviated by removing the superfluous parts. The abbre-
viated version reads ALL COMPONENTS WHERE X = 3 MUST FULFIL THE
CONTEXT CONDITION Y = 2. A FULFIL THE CONTEXT CONDI-
TION CoCon is an abbreviated FULFILLING THE CONTEXT CONDITION
OF CoCon.

Not Using ‘ONLY’ A context condition indirectly selects an element if the element’s context
property values match with the context condition. A context property
value, e.g. ‘Integrate Two Contracts’, belongs to a context property
name, e.g. ‘Workflow’. One context condition can refer to values of sev-
eral context property names. The CoCon-predicate operation ‘ONLY’
demands that no other context property values of the same context prop-
erty name than those specified in the context condition(s) are associated
with an constrained element. For example, the inter-value CoCon ALL
COMPONENTS WHERE ‘Workflow’ CONTAINS ‘Integrate Two Contracts’
MUST ONLY BE THE SAME AS ALL COMPONENTS WHERE ‘Workflow’
CONTAINS ‘CustomerMarriage’ demands that a component associated
with ‘Integrate Two Contracts’ must be associated with ‘CustomerMar-
riage’. Due to the CoCon-predicate operation ONLY, it must not have
any other values for ‘Workflow’ than ‘Integrate Two Contracts’ and ‘Cus-
tomerMarriage’. 1 suggest not to use the CoCon-predicate operation
ONLY for inter-value CoCons because it easily can be misrepresented.
Instead, the type-instance constraint explained in section can be
used to define that certain elements only can be associated with a subset
of the valid values of a context property.

Constraints The following constraints simplify inter-value CoCons:

e The CoCon-predicate operation ‘ONLY”’ is not allowed to be used
in inter-value CoCons.

e Both the target set elements and the scope set elements must be
of the same metaclass. For instance, it is not allowed to have com-
ponents in the target set and users in the scope set of the same
inter-value CoCon.

e In case of a THE SAME AS CoCon, both the target set elements and
the scope set elements must be selected indirectly via one single
context condition. Direct selection of constrained elements is not
allowed. Thus, the expression the same as only refers to the context
property values - it means ‘in the same context as’. Section [5.6.5
will continue discussing this constraint in detail.

e In case of a FULFILLING THE CONTEXT CONDITION OF CoCon, the
scope set elements must be selected indirectly via one single context
condition.

e It is not allowed to indirectly select scope set or target set ele-
ments via the unrestricted total selection ALL ELEMENTS (see sec-
tion . Instead, the valid values definition should be used to
describe, which values are allowed to be associated with elements.

5.6.3 Detectable Inter-CoCon Conflicts of Inter-Value CoCons

As explained in section [4.3.1] one CoCon can contradict other CoCons.
Conflicting requirements can automatically be detected if one of the fol-
lowing rules is violated:

Two Conditions for the Let echico, €Harpo a0d €Groucho be elements of the target set or scope
Same Element set of one inter-value CoCon. Please consider that echico, €Harpo and

5 The Context-Based Constraint Language CCL 85

€Groucho Can represent the same (model) element in different target or
scope sets. Furthermore, cp is a context property name. Among cp’s
valid values are v; and ve with v; # ve. A context condition selects an
element because the context property values of this element match the
context condition. Hence, the element is selected due to a value that is
associated with this element, e.g. v1 or vs.

1. No element ecpico can be THE SAME AS epgrpo due to vy if ecpico
is NOT FULFILLING THE CONTEXT CONDITION OF €Harpo due to v;.

2. No element ecpico can be FULFILLING THE CONTEXT CONDITION
OF eHarpo due to v1 if echico is NOT THE SAME AS epgqrpo due to
V1.

3. No element ecpico can be NOT FULFILLING THE CONTEXT CONDITION
OF emarpo due to vy if ecpico is THE SAME AS eprqrpo due to vy.

4. No element ecpico can be THE SAME AS emqrpo (CoCony) due to
v1 via the context condition ccy if CoCons refers to vg via the
context condition ccp and defines that epgrpo must be THE SAME
AS egroucho and vy does not fit cco or vy does not fit ccy

5.6.4 Examples for Using Inter-Value CoCons

Inter-Value Constraints If the system manages personal data then the valid values of the context
property ‘Personal Data’ explained in sectionmay be of V'V PersonalData
= { ‘True’, ‘False’}. This valid values definition demands that no el-
ement of the system has other values of ‘Personal Data’ than ‘True’
or ‘False’. For example, the value ‘Possibly’ is not allowed. In or-
der to allow it, the valid values definition for ‘Personal Data’ must be
changed. Nevertheless, taking only V1 PersonalData iy yegards can lead
to inconsistent context property values because it allows to associate
both valid values to the same element: according to the valid values,
‘Personal Data (Contract Management): { True, False}’ is a correct ex-
pression. However, this doesn’t make sense because the same element
cannot have both ‘True’ and ‘False’ values. This example illustrates
the need for the ‘inter-value constraints’ introduced in section B.2.4t
an inter-value constraint must prevent contradicting values of one con-
text property for the same element. Inter-Value CoCons can be used to
specify inter-value constraints. In case of ‘Personal Data’, the following
inter-value constraint prevents contradicting values of ‘Personal Data’ for
the same element: ALL ELEMENTS WHERE ‘Personal Data’ CONTAINS
‘True’ MUST NOT BE THE SAME AS ALL ELEMENTS WHERE ‘Personal
Data’ CONTAINS ‘False’.

In this example, the unrestricted selection ALL ELEMENTS is used to refer
to any element regardless of its metaclass.

5.6.5 Related Research on Inter-Value CoCons

(No) Correspondance This section compares the THE SAME AS CoCon-predicate with Model
Correspondence Assertions (MoCas) defined [Bus02]: an element e; ‘cor-
responds to” another element es if both e; and es represent the same real
world entity. In contrast, THE SAME AS predicate only refers to one arte-
fact element e that must (not) fulfil both the target set context condition
and the scope set context condition. It does not compare e to any other
artefact element - not in the same artefact, and not in any other artefact.
In THE SAME AS CoCons, the constrained elements are only selected via

5 The Context-Based Constraint Language CCL 86

OWL

context conditions. Thus, ‘THE SAME AS’ means ‘in the same context as’:
it expresses that one artefact element does (not) reside in both contexts.
In case of MoCas, equality between to elements means that the same real
world entity is represented by two different artefact elements instead.

Inter-Value CoCons represent knowledge on metadata. Knowledge repre-
sentation is the field of Artificial Intelligence (AI). Typically, knowledge
is represented by characterizing classes of objects and the relationship
among them. CoCons express relationships and, thus, are now compared
to the ontology language OWL (see [BvHHT04]) developed by the se-
mantic web initiative.

In computer science, an ontology is the attempt to formulate an concep-
tual schema within a given domain, a typically hierarchical data structure
containing all the relevant entities and their relationships and rules (the-
orems, regulations) within that domain. OWL is an acronym for Web
Ontology Language (or Ordinary Wizard Level in Harry Potter). It was
developed as a follow-on from RDF (Resource Description Framework)
and RDFS, as well as earlier ontology language projects including OIL
and DAML. OWL is based on description logic.

In computer science, an extension is the set of things to which a prop-
erty applies, while the intension describes the shared properties of a set
of extensions. In OWL, the extensions are called individuals, while their
intensions are called classes. CoCons refer to extensions and call them el-
ements. A CoCon expresses a condition on how its constrained elements
must relate to each other. This condition is called CoCon-predicate
and is a relation. In OWL, a relation between two individuals is called
a object property. CoCons can be expressed in OWL. So, why should
we use CoCons if we can use OWL? Besides OWL, many other languages
for expressing logic exist which can be used to express CoCons. If you
dislike the context-based constraint language CCL defined in [Biib02a]
then use your favourite logic language.

In order to express CoCons in a logic language, you have to

e select the constrained elements according to their context and to
express relations between them. Typically, logic languages are not
used in that way. Instead, they directly specify their constrained
elements by naming them.

e define the artefact-type-specific semantics of your logic language
for each system artefact you want to monitor for compliance with
your expressions. Typically, logic languages are not uses in that
way. Instead, they express all knowledge of a system which neces-
sary to check if certain conditions are fulfilled — they specify the
same details that are again specified in the relevant system arte-
facts. On the contrary, CoCons don’t need a complete model of the
system. They directly check the system artefacts and don’t need a
logical model that mirrors the information expressed in the system
artefacts.

6.

UML-Specific Semantics of CCL

6.1

This chapter demonstrates how to check a UML model for compliance
with the CoCon-predicates proposed in the previous chapter First,
section [6.1] explains how to integrate the CoCons of chapter [f] into the
UML metamodel because the notion of CoCons is not part of the UML
yet. Then, section [6.2] compares CoCons with the UML’s standard con-
straint language OCL. This comparison reveals why CoCons are a new
concept.

Integrating CoCons into UML

The notion of context-based constraints (CoCons) is not part of the UML
at present. This section discusses how to integrate CoCons into the UML
metamodel. Moreover, it explains why UML hardly can express how to
weave in a constraint.

6.1.1 The Easy Part: Using UML’s Constraints and Tagged Values

UML profiles provide a standard way of using UML in a particular area
without having to extend or modify the UML metamodel. A profile is
a predefined set of stereotypes, tagged values, constraints, and notation
icons that collectively specialize and tailor UML for a specific domain
or process. In order to understand this section, the reader should be
familiar with the ‘core’ and ‘extension mechanisms’ packages of UML
1.5 (see [OMGO3al), or with the ‘constraint’ and ‘profiles’ packages of
UML 2.0 (see [OMGO3D]).

Context properties can be expressed in UML as tagged values. In UML
1.5, the metaclass ‘TagDefinition’ defines the name and other properties
of a tagged value. A ‘TaggedValue’ belongs to exactly one TagDefinition
and contains the actual values for a model element. A «ContextProper-
tyTag> TagDefinition specifies a context property name, e.g. “Workflow’,
and a <ContextPropertyValues> TaggedValue (see figure specifies a
context property value, e.g. ‘Create XYZ Report’. In UML 2.0, a Stereo-
type may have Properties, which may be referred to as tag definitions.
When a stereotype is applied to a model element, the values of the prop-
erties are referred to as tagged values.

0.5

<<CoCon>>
Constraint

Element

+ConstrainedElement

1
1
1
1
1
! 0..*
1
1
1
1

. > <<Context Property Value>>
Tagged Value

Figure 6.1: A Point Cut indirectly associates a Constraint with its Con-
strained Elements

87

6 UML-Specific Semantics of CCL 88

Expressing context-based constraints in UML seems to be straightfor-
ward: In UML 1.5, a Constraint has the attribute ‘body’ which stores a
BooleanExpression that must be true when evaluated for a model to be
well-formed. In case of a «CoCon> Constraint (see figure , the body
attribute stores strings that comply with the Context-Based Constraint
Language (CCL) syntax definitions given in [Biib02a]. In UML 2.0, the
CCL string is stored as ValueSpecification of the «CoCon» Constraint.
But even though UML has a Constraint metaclass, it cannot easily inte-
grate CoCons as explained in the next section.

6.1.2 The Problem: UML Constraints Don’t Consider Point Cuts

The UML way of specifying which elements are constrained by a con-
straint doesn’t fit to the notion of crosscutting constraints — the UML
does not consider constraints which are weaved in (see section as
explained next. Both in UML 1.5 and in UML 2.0, a Constraint is as-
sociated with ModelElements via the ‘constrainedElement’ association.
According to [OMGO3b], this association defines the ordered set of Ele-
ments referenced by this Constraint. The constrained elements are those
elements required to evaluate the constraint. An association directly links
model element. Hence, the constrainedElement association holds a list
of directly identified ModelElements affected by the Constraint. But,
a «CoCon>Constraint can be associated indirectly with model elements
via a context condition. A CoCon constrains all element fulfilling its con-
text conditions even if these elements are not associated with each other
at all.

In general, a UML constraint hardy can express a crosscutting advice
as constraint because it can only express where to weave in the advice
by directly listing the constrained elements. Point cuts, on the contrary,
can define a condition which is used to select the involved elements —
the condition is a query. UML cannot express such point cut conditions
because when specifying the constraint, we only know those join points
which currently fit the point cut condition. We could list these known
join points in the set of constrainedElements, but as soon as the system
(model) changes, some of these join points may not fulfil the point cut
condition anymore, while some new join points may be added to the con-
strainedElements set. A UML tool which expresses cross-cutting concerns
as constraints must re-evaluate the constraint’s point cut condition after
each model modification in order to keep the list of constrainedElements
up to date.

In figure the ‘indirect association’ of a CoCon with its constrained
elements is depicted as dependency (a dotted arrow). It works as follows:

1. The context condition in the body expression of a «CoCon> Con-
straint refers to TaggedValue(s).

2. The TaggedValue is associated with a ModelElement. This Mod-
elElement is indirectly associated with the CoCon if the follow-
ing condition holds: this TaggedValues meets the CoCon’s Con-
textCondition, while other TaggedValues associated with the same
ModelElement must not violate that ContextCondition.

Maybe, some future version of UML supports ‘indirect associations’ whose
point cut condition must be re-evaluated each time when traversing them.

6 UML-Specific Semantics of CCL 89

6.2 Comparing Context-Based Constraints with OCL

Typically, the Object Constraint Language OCL ([OMGO03Db, WK99]) is
used for the constraint specification of UML models. This section com-
pares OCL to CoCons.

6.2.1 UML Semantics of ACCESSIBLE TO CoCons

This section discusses the translation of ACCESSIBLE TO CoCons into
OCL via the privacy policy example described in section[2.2)and expressed
in CCL in section |3.3.6 This CCL expression is two lines long. It can
incompletely be specified in OCL as:

context component inv: self.taggedvalue
->select(tv | tv.dataValue = "Create Report")
.type -> select(td | td.name = "Workflow")
-> notEmpty ()

implies self.clientDependency.supplier
-> select(i | i.0clIsTypeOf (Interface))

.clientDependency
-> select(d | d.oclIsKindOf (Abstraction)
and d.stereotype.name = '"realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf (Component))

newline .taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")
-> Empty)

This OCL expression states that a component having the tagged value
‘Workflow: Create Report’ must not (= ‘Empty ()’ at the end of the OCL
expression above) depend on the interface of a component having the
tagged value ‘Personal Data: True’. The violation of this OCL expression
is illustrated in the UML deployment diagram shown in figure In this
diagram, the dependency relationship (represented as dotted arrow in the
diagram, and as clientDependency in the OCL expression) specifies that
component ‘A’ invokes component ‘B’. However, this invocation violates
the privacy policy due to the context property values of A and B.

B AOQ"’” A

| I
K Personal Data: Yesj K Workflow: Create XYZ Report :I

Figure 6.2: The Component ‘A’ is Not Allowed to Access the Component
‘B?

Why should anyone use the new language CCL for expressing CoCons
at all if the prevailing (standard!) language OCL already can express
the same privacy policy? The OCL constraint specified above is incom-
plete. It would be much longer if it would cover the following missing
details. First, it only defines inaccessibility for component types, but not

6 UML-Specific Semantics of CCL 90

for component instances. Moreover, it does not consider communication
between components in a sequence diagrams or collaboration diagrams.
For each of these diagrams, the concept of (in)accessibility both between
component types and between component instances must also be consid-
ered in the specification of artefact-specific semantics. Appendix [B| on
page lists all OCL expressions needed to express the artefact-specific
semantics of ACCESSIBLE TO CoCons for standard UML 2.0 models.

In addition to ‘plain’ standard UML, some component specification ap-
proaches consider composition of components. The OCL expression given
above does not consider composition (or aggregation): if the component
‘B’ in figure does not manage personal data, but ‘B’ is composed
of other components among whom at least one component handles per-
sonal data, than ‘A’ must not invoke an operation of an interface of ‘B’.
Furthermore, the OCL expression given above does not handle recur-
sion (a solution is described in |[CKM™99a]): ‘A’ must not invoke an
operation of an interface of ‘B’ if ‘B’ calls another component ‘C’ han-
dling personal data in order to execute A’s call. This is an example for
an artefact-type-specific semantics that increases the complexity of the
detect-CoCon-violations algorithm as discussed in section [4.2.2] Recur-
sion can also be handled by deriving context property values from a model
element to other model elements as discussed in section 5.3

Different interpretations of a CoCon-predicate result in different se-
mantics for the same artefact type. For example, does the CoCon-
predicate ‘x is accessible to y’ refer to composition of components? The
answer depends on the interpretation of ‘x is accessible to y’. I pro-
pose that the artefact-specific semantics should consider composition if
the artefact type can represent composition. Moreover, does the CoCon-
predicate ‘x is accessible to y’ refer to recursive invocation between com-
ponents? I suggest not to consider recursion in the CoCon-predicate.
Instead, I propose to define a belongs-to relation between elements that
invoke each other during the call execution as explained in section
Such belongs-to relations must be considered when evaluating a context
condition, but not when evaluating the CoCon-predicate. Nevertheless,
recursion can be considered in the CoCon-predicate as demonstrated in
appendix [B] Again, is depends on the interpretation of ‘x is accessi-
ble to y’. Moreover, an artefact using additional concepts which are
not part of the artefact’s standard needs special artefact-specific seman-
tics: the OCL translation of the CoCon example given above must be
adapted if any profile is used that adds a new notion of (in)accessibility
to UML. For example, the ‘UML Components’ approach introduced in
[CDO0] specifies components via stereotyped classes. The incomplete
OCL expression given above does not consider stereotyped classes (nei-
ther in component nor in deployment nor in sequence or collaboration
diagrams). Hence, it must be adapted as demonstrated in appendix
Bl Without such an adaptation, the OCL expressions do not apply to
classes. In that case, the artefact-specific semantics of the ACCESSIBLE
TOCoCon for UML models simply cannot be applied to those UML models
that stick to the UML components approach. Otherwise, applying the
(not class-aware) interpretation of ‘x is accessible to y’ leads to wrong
results when running the detect-CoCon-violations algorithm of section
The detect-CoCon-violations algorithm only works if the interpre-
tation of the artefact-specific semantics is correct. This is a limitation
of CoCons. On the contrary, the detect-inter-CoCon-conflicts algorithm
does not depend on the interpretation of the CoCon-predicate as dis-
cussed in section

6 UML-Specific Semantics of CCL 91

In case of ACCESSIBLE TO CoCons, the artefact-type-independent seman-
tics definition consists of three words: ‘is accessible to’. On the contrary,
the corresponding artefact-type-specific OCL listing starting on page [124]
is many pages long because it considers a lot more details. CCL stays on
the artefact-type-independent, abstract level. OCL, however, is too close
to programming for expressing requirements at this abstraction level. The
effort of writing down a requirement in the minutest details is unsuitable
if the details are not important. The designer can ignore many details
by expressing the same requirement via CCL instead of OCL. Moreover,
it is easier to adapt the short artefact-type-independent CCL expression
instead of changing all the OCL expressions if the corresponding require-
ment changes. Besides the detail level, two other differences between
CoCons and OCL are discussed in the next two sections.

6.2.2 CoCons can be Verified Already at the Same Meta-Level

The Object Management Group (OMG) describes four meta-levels: Level
‘M’ refers to a system’s objects at runtime, ‘M;’ refers to a system’s
model or schema, such as a UML model, ‘M5’ refers to a metamodel,
such as the UML metamodel, and ‘M3’ refers to a meta-metamodel, such
as the Meta-Object Facility (MOF). Note that level M;_; elements are
instances of level M, elements.

If an OCL constraint is associated with a model element on level M;
then it refers the instances of this model element on level M;_; — in
OCL, the ‘context’ ([CKMT99b]) of an invariant is an instance of the
associated model element. In order to check a M; level OCL constraint,
either M level instances must be simulated as proposed in [RG00], or the
OCL constraint must be translated into My level source code as suggested
in [HDFOQQ]. In order to check the compliance of a model element (M;
level) with an OCL constraint, the OCL constraint must be specified
on metamodel level (Ms). Hence, the OCL version of the privacy policy
described in the previous section[6.2.1|must be specified on the metamodel
level.

On the contrary, M; level model elements can be checked for compli-
ance with CoCons expressed on M; level as explained next. A CoCon’s
context condition can be evaluated as soon as the corresponding tagged
values are defined. The tagged values of a model element are available
as soon as they are specified on M; level. Hence, the model elements
constrained by a Mj level CoCon can already be identified on M; level.
Nevertheless, identifying the constrained elements is not sufficient. Ad-
ditionally, each pair of related constrained elements must be checked if it
fulfils the CoCon-predicate. Again, the CoCon-predicate can be checked
on M, level if the semantics definition of the CoCon-predicate refers to
M level model elements. The OCL semantics definition of ACCESSIBLE
TO provided in the previous section are be expressed on Ms level and refer
to M;j level model elements. Therefore, a CoCon using these semantics
definitions can be expressed on M level and can be checked on M level.
This is a major difference between CoCons and the prevailing notion of
constraints.

OCL is needed to precisely define the semantics of CCL in UML 2.0
models. However, the person who specifies a CCL expression in a UML
model must not need to know the artefact-type-specific semantics def-
initions in OCL at metamodel level. Hence, CCL provides a shortcut.
Without CCL, the designers would have to write down long OCL expres-

6 UML-Specific Semantics of CCL 92

sions at metamodel level in order to express the same requirement that
can be specified in a short CCL expression on model level. Modifying the
metamodel each time the requirements change is not appropriate.

In [GF94], the following requirements engineering problem is described.
Those persons that produce traceability links - mainly the members of
the development team - have different goals and priorities than the users
- mainly the clients, managers, and the test and maintenance team — who
use these traceability links in order to check whether the system complies
with the requirements. According to [Pal00], the designers and develop-
ers simply do not see the benefits that may accrue to the final product
compared to the time and effort required for producing the traceability
links. CoCons enable the designers and developers to instantly see the
benefits because a model element can be checked for compliance with
requirements at the moment when the relevant context property values
are associated with it. A tool can immediately warn designers if their
model violates a CoCon. This direct feedback can encourage them in
associating model elements with context property values.

6.2.3 CoCons can Constrain Unassociated Elements

The key concept of CoCons is the indirect selection of constrained ele-
ments. A M; level OCL constraint cannot consider unknown M; model
elements - model elements are unknown if they do not exist yet when spec-
ifying the constraint. On the contrary, any unknown element becomes
involved in a context-based constraint simply by having the matching con-
text property value(s). Hence, the constrained M; elements can change
without modifying the M; level CoCon expression. The indirect selec-
tion of constrained elements is particularly helpful in highly dynamic or
complex models. Every new, changed or removed model element is auto-
matically constrained by a CoCon due to the element’s context property
values.

An OCL constraint expressed on M; level can only refer to those M;
level elements that are directly associated with the constraint via (pos-
sibly nested) associations. On the contrary, the scope of a CoCon is not
restricted. A CoCon can refer to elements that are not necessarily asso-
ciated with each other or which even belong to different models. OCL
constraints are associated with a model element. CoCons, however, may
not necessarily be directly associated with a model element. Instead,
one CoCon can indirectly select its constrained elements via the context
property values associated with the model elements. A CoCon can di-
rectly be associated with model element, but it should not be associated
with an constrained element that is indirectly selected via a context con-
dition because the CoCon might not constrain the element anymore if
the element’s context property values change.

By using CoCons, we don’t have to understand every detail (‘glass box
view’). Instead, we only must understand the context property values
we use for describing the elements involved in the requirement. The
person who specifies requirements via CoCons does not have to have
the complete knowledge of the system due to the indirect association
of CoCons with the system parts involved. It can be unknown which
elements are involved in the requirement when writing down the CoCon.
The elements involved in the requirement can be identified automatically
each time when checking the system for compliance with the CoCon.

7. The CCL Analysis & Specification Method CCLM

This chapter introduces general methodical guidance on how to iden-
tify and apply CCL. It introduces the CCL analysis & specification
method (CCLM) that tells how to identify context-based business rules
relevant in a certain application domain.

7.1 Overview on CCLM

7.1.1 Background: Adopting Kotonya’s and Sommervilles’s Requirements Engineering

Process

Methods

Goal: Identifying CoCons &
Context Properties

In this section, the different phases and activities of the CCLM are out-
lined.

According to [NE00], a method provides a prescription for how to perform
a collection of activities, focusing on how a related set of techniques can
be integrated, and providing guidance on their use. A method defines
the process used to gather requirements, analyse them, and design an
application that meets them in every way. There are many methods, each
differing in some way or ways from the others. There are many reasons
why one method may be better than another for a particular project: For
example, some are better suited for large enterprise applications while
others are built to design small embedded or safety-critical systems. On
another axis, some methods better support large numbers of architects
and designers working on the same project, while others work better when
used by one person or a small group.

Gerald Kotonya and Tan Sommerville have defined requirements engi-
neering processes in [KS98]. The CCL Analysis & Specification Method
CCLM does not re-invent the wheel. Instead, it refines the process de-
fined in [KS98]. AAccording to requirements engineering process is an
organised set of activities that transform inputs to outputs. Inputs to the
requirements engineering process are information about existing systems,
stakeholder needs, organisational standards, regulations and domain in-
formation. Requirements engineering processes vary radically from one
organisation to another. Factors contributing to this variability include
different technical maturities, different disciplinary involvements, differ-
ent organisational cultures and different application domains. There is
therefore no ‘ideal’ requirements engineering process. However, most
processes include the four requirements engineering phases described in
section [[.3} requirements elicitation, requirements negotiation, require-
ments specification and requirements validation. CCLM adds activities
to each of these four phases of the requirements engineering processes
as illustrated in figure In these additional activities, CCL-specific
questions are asked for identifying context properties and context-based
constraints. Without adding CCLM’s activities to the requirements anal-
ysis, the requirements specification documents gathered probably won’t
assist in identifying context properties and context-based constraints. For
each requirements engineering phase, CCL adds some activities:

93

7 The CCL Analysis & Specification Method CCLM 94

Four Phases of CCLM

Iterative Refinement

Preamble: CCL -
usefull at all? No
Rule-Driven Context-Driven
Requirements Elicitation Requirements Elicitation

el

Requirements
Negotiation
cCL Refme-_ment
. Iteration
Specification
Loops
CCL /
Validation

Figure 7.1: Overview on the Four Phases of CCLM for Identifying
Context-Based Business Rules

e Preamble: The objective of this optional initial phase is to identify
quickly whether CCL is useful for a certain software development
project at all. If it turns out that CCL is not useful then CCLM
ends here. The preamble phase is described in section [7.1.3]

e During requirements elicitation, the software requirements are
discovered, articulated, and revealed from stakeholders or derived
from system requirements. CCLM offers two ways for identifying
the appropriate CoCons and context properties: both a rule-driven
and a context-driven approach are presented here. As a result of
both approaches, informal CoCon-Rules and context properties are
identified. The requirements elicitation phase of CCLM is described
in section

e During requirements analysis and negotiation, all stakehold-
ers discuss the informal requirements discovered in the previous
phase in order to arrive at a set of agreed upon informal CoCon-
Rules and context properties. The requirements negotiation phase
of CCLM is explained in section [7.3]

e During CCL specification, the informal CoCon-Rules are speci-
fied in CCL, and the context properties are applied to the system
or its model. The CCL specification phase of CCLM is introduced
in section [.4l

e During CCL validation, the CCL expressions are checked for
omitted, extra, wrong, ambiguous and inconsistent requirements.
Moreover, the compliance of the system or its model with the CCL
expressions is validated. The CCL validation phase of CCLM is
described in section [Z.5

Managing changing requirements is not only a process of managing doc-
umentation, it is also a process of recognising change through continued
requirements elicitation, re-evaluation of risk, and evaluation of systems
in their operational environment. CCLM does not stick to the top-down
waterfall-process model. Instead, it is possible in each CCLM phase to
go back to a previous phase in order to refine the results of this previ-

7 The CCL Analysis & Specification Method CCLM 95

Focus: Constraints

ous phase. These forward- and reverse-engineering steps are illustrated
in figure [7.2] via tiny arrows between the phases. These arrows from
each phase to its previous phase are omitted in figure [7.1] and figure [7.3]
in order to keep them comprehensive. Moreover, the first results of the
CCLM method don’t have to be complete. Instead of completing each de-
velopment phase in its entirety before advancing to the next, all phases
should be revisited multiple times during the project. Hence, the first
basic CCL expressions specified during the first CCLM iteration should
be iteratively refined later on. In some of the activities described in the
oncoming sections, refinement is explicitly addressed. For example, the
CCL specification activity offers extra advice for refining each CoCon and
prevents misleading CoCons that is only addressed if it is started not for
the first time.

Constraints | Rules

<+ ‘ —>
Requirements |
Elicitation \ \ \ \
g \
Requirements \%?6 Q \ \ %
) Negotiation \Z‘« @) g
5 e \ &
2 ¢ f \% @ \ 2
S 2 3
Specification

vt L 7
CCL w
Validation

Time

|

|

|

ccL \ = |
\? |

l

|

|

|

Figure 7.2: Tterative Refinement of CCL Constraints via CCLM

The early iterations of CCLM focus on identifying constraints as illus-
trated in figure [7.2l The rationale is explained in section [3.4.3} con-
straints cannot have side effects, while rules can. Hence, the early CCLM
iterations should focus on specifying constraints. I suggest ignoring events
and actions in the first CCLM iteration. In later iterations, these events
and actions can be added to the previously specified CoCons in order to
turn them into CoCon-Rules.

7.1.2 Introducing the 11 Activities during the CCLM Process

11 Activities

Most of the phases shown in figure [7.1] consist of several activities. The
11 activities of CCLM are illustrated in figure [7.3] The next sections
describe each of these 11 activities in detail. This section provides an
overview by outlining each activity:

e The ‘Preamble’ activity quickly identifies whether CCL is useful
for the particular software development project at all. If it turns
out that CCL is not useful then CCLM ends here.

e The CoCons and context properties relevant for a certain appli-
cation can be identified in two different ways: a rule-driven and
a context-driven approach are suggested here. Both approaches

7 The CCL Analysis & Specification Method CCLM 96

CCL useful at all? ‘

.. -
either either, / N\
) —»< Abort >
Cor 7 No vory
iYes P L
([or) yd AN
//"\v”\\) e
e) /% A
Rule-Driven CoCon /««/ Context-Driven Context N
Family Identification e Elicitation \\
N I \
T GoGon Famil Y \
either, y Context-Driven CoCon \

v L3
(\\OJ/ igenrined Elicitation)

CCL CoCony Families Identified v
Rule-IIEDIlri.\t/etn CoCon Context-Driven CoCon y
o Family Identification /

v
Rule-Driven Context CCL CoCon er*\l\ — No CCL
icitati f Families

Property Elicitation or/ CoCon Familiy
Identified Identified

\ 4
" Informal CoCon-Rules & ™~

~ q //\'
~__ Informal Context Propertles/‘

.

Y
éitheﬁx)
— \.or/
e v

/ Requirements Negotiation

/
/ — \ 4
/ Context Property Application

[v
[CCL Specification

\ < Formal CoCons >
T 3

\ v
N\ CCL Validation
AN

kY
N

Con;&s\'\\ _(&ither,
Exist Nor/
v No Conflicts Exist

e AN
<F|n|shed/

N

Figure 7.3: CCLM consists of 11 Activities

consist of three activities. It is possible to use either only the rule-
driven or only the context driven approach. Best results, however,
are achieved by applying both approaches either simultaneously or
consecutively as discussed in section |7

— The rule-driven approach for identifying the relevant CoCons
and context properties consists of the following three activities:

% The ‘Rule-Driven CoCon Family Identification’ ac-
tivity presented in section[7.2.3|helps to identify which five
CoCon families are useful at all. Each useless CoCon fam-
ily must not be considered in the oncoming activities. If it
turns out that no CoCon family is of use for the particular
application then the rule-driven approach ends here.

* The ‘Rule-Driven CoCon Elicitation’ activity presented
in section assists in discovering the relevant context-
based business rules. They are written down as informal
CoCon-Rules in plain English without many details.

7 The CCL Analysis & Specification Method CCLM 97

* The ‘Rule-Driven Context Property Elicitation’ ac-
tivity introduced in section facilitates determining
the relevant context properties according to the informal
CoCon-Rules identified in the previous activity.

— The context-driven approach for identifying the relevant Co-
Cons and context properties consists of the following three
activities:

* The ‘Context-Driven Context Property Elicitation’
activity described in section helps figuring out in
which contexts are particularly challenging. In which con-
text do problems arise that need to be handled? For in-
stance, certain situations may call for certain actions.

* The ‘Context-Driven CoCon Elicitation’ activity pre-
sented in section [7.2.6] assists in shaping the context-based
business rules out of the relevant contexts identified in
the previous activity. They are written down as informal
CoCon-Rules in plain English that do not reflect many
details yet.

* The ‘Context-Driven CoCon Family Identification’
activity presented in section[7.2.3|maps the informal CoCon-
Rules identified in the previous activity the CoCon-predicates
available in CCL. If none of the informal CoCon-Rules can
be mapped into CCL then the context-driven approach
ends here.

e During the ‘Requirements Negotiation’ activity described in
section[7.3] all stakeholders discuss the informal CoCon-Rules iden-
tified in the previous activities in order to arrive at a set of agreed
upon requirements.

e The requirements specification phase of CCLM consists of two
activities:

— The ‘Context Property Application’ activity presented in
section applies the context properties identified in the
previous activities to the system or its model elements.

— The informal CoCon-Rules identified and discussed in the pre-
vious activities are turned into constraints by removing events
and actions and are written down in the formal language CCL
during the ‘CCL Specification’ activity explained in section

4

e The requirements validation phase of CCLM focuses on the ‘Con-
flict Detection’ activity presented in section[7.5 It checks whether
the system (model) enriched with context properties violates the
CCL constraints. Moreover, conflicting requirements are detected.
If conflicts exist then their solution must be negotiated with the
stakeholders as described in section [T.al

Each activity of CCLM is discussed in one of the following sections.

7.1.3 Preamble: Why to Apply CCL at all?

Before asking any domain specific question, the general question is why
to apply CCL to a specific system at all. This preamble lists general
reasons for using CCL:

7 The CCL Analysis & Specification Method CCLM 98

e CCL specifies requirements on an artefact-type-independent level.
Therefore, the compliance of a system with requirements expressed
via CCL can be validated during modelling, during configuration
and at runtime.

e CCL helps to detect conflicting requirements as early as possible.
In contrast to OCL constraints, CCL expressions specified during
modelling can already be checked on the design level. Fixing con-
flicting requirements during implementation is much more expen-
sive.

e Requirements or contexts tend to change often. Indirectly select-
ing the elements involved in a requirement improves adaptability
because every new or changed element of the system is constrained
automatically if it fits to the context condition of a CCL constraint.
Moreover, CCL’s capability to indirectly select the elements in-
volved in a requirement is particularly useful in loosely coupled
systems or systems that manage frequently changing data. Again,
every new or changed element of the system is constrained auto-
matically.

e During design, one requirement can affect several model elements
that may not be associated with each other or even belong to differ-
ent models. At runtime, one requirement can affect several compo-
nents that may not invoke each other or may even run on different
platforms. CCL can express a requirement for a group of otherwise
possibly unrelated elements - even across different views, element
types, models, or platforms.

e A requirements specification should serve as a document under-
stood by designers, programmers and customers. CCL is an easy
comprehensible language that assists English-speaking persons in
understanding the system’s design rationale. Appendix [B| demon-
strates that CCL is more easily understood than OCL because it
ignores unimportant details and because it is similar to plain En-
glish.

If none of these issues are important for a certain software system than
CCL should not be applied to it. In that case, none of the activities listed
in the oncoming sections is relevant.

7.2 The Requirements Elicitation Phase of CCLM

7.2.1 Rules-Driven or Context-Driven Requirements Elicitation

Requirements Elicitation

The first phase of requirements engineering process is elicitation. A gen-
eral top-down requirements elicitation process consists of the following
activities: Identify all stakeholders who could be sources of requirements,
e.g. users, customers or domain experts. Then, ask relevant questions in
order to gain an understanding of the problem, issues and constraints.
Next, analyse the information looking for conflicts, ambiguities, incon-
sistencies, problems or unresolved issues. Afterwards, confirm your un-
derstanding of the requirements with the stakeholders. Finally, create
requirements expressions.

The CoCons and context properties relevant in a certain application do-
main can be identified in two different ways: a rule-driven and a context-
driven approach are suggested here.

7 The CCL Analysis & Specification Method CCLM 99

Goal: Identify Relevant
Business Rules

Rule-Driven

Context-Driven

Difference?

Pair Requirements
Elicitation

As explained in section the objective of CCLM is to find out whether
any business rule exists that depends on the context of the system ele-
ments or its users. Two strategies for identifying these business rules are
introduced here:

e The rule-driven approach consist of the following three steps:

1. First, the business experts are asked which of the issues ad-
dressed by CCL are needed at all.

2. Then, the business experts are asked for relevant rules.

3. Afterwards, these rules are analysed in order to determine the
relevant context properties.

e The context-driven approach consist of the following three steps:

1. First, the business experts are asked in which context that
problems arise that need to be handled.

2. Next, these contexts are analysed in order to determine the
relevant CoCon-Rules.

3. After that, these CoCon-Rules are mapped to CCL.

Both strategies aim to identify relevant CoCons and context properties.
However, they achieve this goal via different starting points: the rule-
driven approach begins asking about rules, and the context-driven ap-
proach starts asking about contexts. The rule-driven approach is faster,
but reveals less business rules. It is faster because it only addresses busi-
ness rules that can be expressed in CCL. On the contrary, the context-
driven approach identifies useful business rules regardless whether they
can be expressed in CCL or not. The context-driven approach may result
in business rules that cannot be expressed in CCL. The benefit of the
context-driven approach is the possible identification of future CoCon-
predicates. In that case, the only chance to apply CCL is to add a
corresponding CoCon-predicate to CCL as described in section [3:3:5] Al-
ternatively, the requirement may be specified in another formal language
or simply written down in plain English.

It is possible to use either only the rule-driven or only the context-
driven approach. Best results, however, are achieved by applying both
approaches either simultaneously or consecutively. If more than one in-
terviewer work out the relevant CoCons and context properties of one ap-
plication, then some interviewer(s) can choose the rule-driven approach
for asking the business experts, while the other interviewer(s) can use
the context-driven approach in the same time. If only one person is in-
terviewing the business experts, then stills both approaches can be used
consecutively. The results of the context-driven interviews can be com-
bined with the results of the rule-driven interviews in order to improve
the overall quality of the results as explained in section [7.5)

7.2.2 How to Write Down Informal CoCon-Rules

CCL is best applied to Sets
of Elements

Both the rule-driven approach and the context-driven approach suggest
to write down informal CoCon-Rules in plain English. This section
introduced a general guideline how to state these informal CoCon-Rules.
CoCons are most useful if they refer to sets of system or model elements
that are indirectly described via the context in which they are used.
Hence, an informal CoCon-Rule should express a business rule for sets

7 The CCL Analysis & Specification Method CCLM 100

Directly Naming Elements

Hint: From Direct to
Indirect Descriptions

Relate Two Sets of Elements

Informal Syntax

Refinement in Later
Iterations

of elements that are indirectly described according to their context. The
description of the elements involved in an informal CoCon-Rule should
start with ‘all’ followed by the type of system elements. For instance,
the informal CoCon-Rule can refer to ‘all components’ that are used in
a certain context or to ‘all users’ in a certain context.

Of course, it is allowed to directly name the elements involved in an in-
formal CoCon-Rule. For instance, the business rule can constrain the
component ‘ContractManagement’ or the user ‘Mrs. Molly Million’. 1t is
also allowed to combine directly named and indirectly described elements.
For example, the business rule can constrain the component ‘Contract-
Management’ and all components needed in the workflow ’Integrate Two
Contracts’.

In order to identify set elements involved in a business rule it might be
easier to write down a list of directly named elements first. If more
then one directly named element is addressed in the business rule, then
perhaps they share a context. If all system elements in this shared con-
text are constrained by this business rule, then the informal CoCon-Rule
should describe them indirectly according to their shared context instead
of naming all of them directly.

A CoCon always relates two sets of elements. It relates each element
of one set to each element of the other set and defines a condition be-
tween each pair of related elements as illustrated in figure [3:3]on page 31}
Therefore, the informal CoCon-Rule should describe how all elements of
one set relate to all elements of the other set.

The informal CoCon-Rule should stick to the following syntax: ‘all (de-
scription of a set of elements) must (not) be (fulfilling a certain condition
in regards to) to all (description of a set of elements)’. For instance, an
informal CoCon-Rule might state that ‘all components handling personal
data must not be accessible to all users belonging to the controlling de-
partment’. In this example, the part in italics describes how the elements
of one set (certain components) relate to the elements of the other set
(certain users) — it defines the CoCon-predicate.

The following questions can be skipped if this is the first CCLM iteration.
They refine the results gathered in previous iterations of this activity.
An informal CoCon-Rule is easier to handle later on if it expresses the
following details:

e When should the system be checked for compliance with the in-
formal CoCon-Rule? Should it be checked during design, during
configuration or at runtime? Answering this question can be facili-
tated by estimating how often the elements involved in the informal
CoCon-Rule or their contexts change. Not at all during the system’s
lifetime, maybe some times a year, or possibly daily?

— If the involved elements or their contexts change at runtime
then the informal CoCon-Rule should be checked at runtime

— If the involved elements or their contexts change due to (re-
)eonfiguration then they should be checked during deployment.

— If the involved elements or their contexts change due to (re-)-
design then they should be checked during modelling.

e For each informal CoCon-Rule write down the rationale why to
enforce this CoCon. For instance, write down that ‘this requirement

7 The CCL Analysis & Specification Method CCLM 101

is explained in the companies business plan available in the file
thinkahead.doc’.

e Write down what should happen if this business rule is violated.
Who is responsible for this action: the software or certain users?
For each action, try to figure out if the software can do it, or if
human users are needed to do it.

No Syntax The syntax of an informal CoCon-Rules doesn’t matter yet as long as it is

comprehensible for English speaking persons. Each informal CoCon-Rule
will be mapped into a formal CoCon later on. The business rule should
be stated in only one sentence, but the details can be added via extra
sentences.

In the next three sections, the rule-driven approach for identifying context-
based business rules is presented.

7.2.3 Rule-Driven CoCon Family Identification

This section describes the first activity of the rule-driven approach. It is
called the ‘Rule-Driven CoCon Family Identification’ activity and helps
to identify which CoCon families are useful at all. In this activity, the
stakeholders are asked the questions in order to find out which CoCon
family must (not) be considered in the oncoming activities:

1. Shall all users or all components be able to access all components
or business objects? If not, then access permission CoCons should
be considered in section [7.2.4]

2. Should certain workflows be protected by transactions? Shall cer-
tain parts of the system use time-critical synchronous communica-
tion, while others use asynchronous communication, e.g. in message
broker applications or in mobile devices? Shall certain communi-
cation calls between components be encrypted, logged according to
the current context? If any answer is yes here, then communication
CoCons should be considered in section [.2.4]

3. Shall the system be distributed to more than one computer? If yes,
then distribution CoCons should be considered in section [T.2.4l

4. Shall the system provide the right information only when it is re-
quired and where it is required? If yes then information-need Co-
Cons should be considered in section [7.2.4

5. Does the system handle a huge number or frequently changing doc-
uments, products or data? If yes then inter-value CoCons should be
considered in section Moreover, inter-value CoCons should
always be considered if any CoCons are used at all.

If the answers to all the questions listed above reveal that no CoCon
family is of use at all, then the rule-driven approach ends here. Otherwise,
the next activity discovers more details on each useful CoCon family.

7.2.4 Rule-Driven Elicitation of Relevant Informal CoCon-Rules

Identifying CoCons

Analysing Only Certain
CoCon Families

The ‘Rule-Driven CoCon Elicitation’ activity presented here assists in
discovering the relevant context-based business rules. They are written
down as informal CoCon-Rules in plain English that do not reflect many
details yet.

The 22 different CoCon-predicates of CCL are grouped into five CoCon

7 The CCL Analysis & Specification Method CCLM 102

families. The previous activity presented in section[7.2.3]assists in finding
out which of the five CoCon families are useful in the application domain
at all. This section lists a block of questions for each interesting CoCon
family. If a certain CoCon family is uninteresting for the particular ap-
plication then skip its question block. If the CoCon family is relevant
then write down the corresponding business rule down via an informal
CoCon-Rule as described in section

Identifying Relevant Access Permission CoCons

The following questions should not be asked if the application of access
permission CoCons was regarded useless in the ‘CoCon Family Identifi-
cation’ activity:

e Which users or components are not allowed to access what? Write
down this business rule via an informal CoCon-Rule as described
in section [(,2.2)

e For each informal CoCon-Rule answer the following question: Does
your requirement address general access, or does it particularly ad-
dress only read access, write access or delete access? If appropriate,
refine your initial access permission CoCon. For instance, write
down that ‘all users belonging to a certain department must not
have read access to all components that handle certain data’.

Repeat these questions until the business experts cannot identify more
access permission requirements.

Identifying Relevant Communication CoCons

The following questions should not be asked if the application of com-
munication CoCons was regarded useless in the ‘CoCon Family Identifi-
cation’ activity.

e Which components should be protected via transaction? For in-
stance, it can be useful to protect all components that are needed
in a certain workflow in order to protect this workflow.

e If the whole system shall use the same communication technique
throughout its lifetime then skip these questions:

— Which components should communicate synchronously with
which other components?

— Which components should communicate asynchronously with
which other components? For instance, message broker appli-
cations or mobile devices typically communicate asynchronously.

e Which components should encrypt their communication when call-
ing which other components?

e Which communication calls shall be logged according to which con-
text of the caller or callee?

e If an error occurs during a communication call, which calls shall be
treated specially?

Repeat these questions until the business experts cannot identify more
communication requirements.

7 The CCL Analysis & Specification Method CCLM 103

Identifying Relevant Distribution CoCons

The following questions should not be asked if the application of distri-
bution CoCons was regarded useless in the ‘CoCon Family Identification’
activity:

e Which components or business object must (not) be available on
which computers? For instance, a workflow can be executed on
a certain computer even if the network crashed if all components
needed in this workflow are available on this computer. Write down
this business rule via an informal CoCon-Rule as described in sec-
tion

e For each initial distribution CoCon, try to figure out if the involved
components or business objects shall be available as original or as
copy. If they are copied, should modifications of the original be
propagated to the copies at once or every now and than? Refine
you initial distribution CoCon if these questions apply and they can
already be answered.

Repeat these questions until the business experts cannot identify more
distribution requirements.

Identifying Relevant Information-Need CoCons

The following questions should not be asked if the application of information-
need CoCons was regarded useless in the ‘CoCon Family Identification’
activity:

e Which users should (not) be notified of which documents or business
objects? Write down this business rule via an informal CoCon-Rule
as described in section [7.2.2

e If a user is notified of certain documents or business objects, which
other documents or business objects are (not) as interesting for
every user of the system? If the user should (not) be notified of
these other documents or business objects, too, then write it down
as informal CoCon-Rule that states which elements are (not) as
interesting as which other elements.

Repeat these questions until the business experts cannot identify more
information-need requirements.

Identifying Relevant Inter-Value CoCons

The following questions should not be asked if the application of inter-
value CoCons was regarded useless in the ‘CoCon Family Identification’
activity:

e If an element has a certain context property value, which other con-
text property values must it (not) have? Write down this business
rule via an informal CoCon-Rule as described in section [Z.2.21

e For each initial inter-value CoCon please state if it is bi-directional
(symmetric) or not:

— A uni-directional inter-value CoCon defines a directed depen-
dency between context property values. For instance, an uni-
directional CoCon can state that all books where the ‘author’=
‘J.K. Rowling’ must have the ‘genre’ = ‘fantasy’, but not all

7 The CCL Analysis & Specification Method CCLM 104

books of the of the ‘genre’ = ‘fantasy’ are written by the ‘au-
thor'= ‘J.K. Rowling’.

— A bi-directional inter-value CoCon defines a dependency be-
tween context property values in both direction. For instance,
a bi-directional CoCon can state that all elements where ‘Per-
sonal Data’ has the value ‘True’ must not have the value ‘False’
for ‘Personal Data’ and vice versa: all elements where ‘Per-
sonal Data’ has the value ‘False’ must not have the value ‘True’
for ‘Personal Data’

Repeat these questions until the business experts cannot identify more
inter-value requirements.

7.2.5 Rules-Driven Elicitation of Relevant Context Property Candidates

The ‘Rule-Driven Context Property Elicitation’ activity introduced here
facilitates determining the relevant context property candidates according
to the informal CoCon-Rules identified in the previous activity described
in section [7.:2:4 A context property candidate may become a context
property later on.

For each informal CoCon-Rule identified in the ‘Rule-Driven CoCon Elic-
itation’ activity the following questions should be asked:

e Does the informal CoCon-Rule describe the elements involved in
this business rule indirectly?

e If yes, then are these elements are indirectly selected according
to their properties? Are the elements indirectly described via the
context in which they are used? In this case, each single criteria
for indirectly selecting the elements is a context property can-
didate. Write down the name of this context. It will be more
closely discussed later on. Note that one informal CoCon-Rule can
use more than one context property candidate. For instance, the
requirement ‘all components that handle top-secret data and are
used in the field service...” refers to two context properties. The
components are indirectly selected if they handle ‘top-secret data’.
Moreover, the components are selected because they belong to the
‘field service’. Both ‘top secret’ and ‘field service’ are context prop-
erty candidates.

7.2.6 Context-Driven Elicitation of Relevant Context Properties

In the previous sections, the rule-driven approach for identifying the Co-
Cons and context properties relevant in a certain application domain has
been described. As discussed in section [7.2.1] another approach exists,
too. This and the next sections introduce the context-driven approach
for identifying the CoCons and context properties relevant in a certain
application domain. The ‘Context-Driven Context Property Elicitation’
activity described here helps figuring out which contexts are particularly
challenging. First, context property candidates are identified via the fol-
lowing questions:

e In which context do problems arise that need to be handled?

e Which exceptions or special situations exist that need special treat-
ment? For instance, certain situations may call for certain actions.

e When or in which context do things happen that should be handled?

7 The CCL Analysis & Specification Method CCLM 105

An element has an endless number of contexts. Only those contexts that
need to be handled should be considered. CoCons group elements that
share a context. Hence, those context should be considered that facilitate
grouping the elements involved in a requirement. A context should be
ignored if no requirement exists that refers to this context in order to
describe those elements that are involved in the requirement.

Hints: Some Typical In order to identify groups of elements to which a business rule applies, the
Contexts stakeholders should be asked if the typical context property candidates
explained in section [3.2.3| apply to their business:

"Workflow” : ...reflects the most frequent workflows in which the associated ele-
ment is used. Do different workflows exist in the applied business?
If no, then the context property "Workflow’ is useless. Otherwise,
which are the most important workflows? Which of them are par-
ticularly challenging?

‘Operational Area’ : ...describes, in which department(s) or domain(s) the associated el-
ement is used. Do different departments or organisational areas
exist in your business? If no, then the context property 'Opera-
tional Area’ is useless. Otherwise, which are the most important
operational areas or departments? In which of them do which prob-
lems arise that need to be handled?

‘Classified Data’ : ... signals whether an element handles confident data. As an exam-
ple, the context property ‘Personal Data’ is used throughout this
thesis. It signals whether an element handles data of private na-
ture. Do privacy policies or laws exist that apply to certain data
managed by your system? If yes, which parts should be handled in
which way?

A term that describes the context that should be handled is called context
property candidate here. The context property candidates discovered via
the questions listed in this section are transformed into context property
names and context property values later on as described in section [7.4.1]

7.2.7 Context-Driven Elicitation of Relevant Informal CoCon-Rules

The following questions should be asked for each context property candi-
date isolated in the previous activity in order to figure out business rules
for this context:

e Which condition must be fulfilled between two related elements?

e Which action(s) must be performed when the context property can-
didate occurs?

e When should the system be checked for compliance with the busi-
ness rule?

After compiling a list of challenging contexts in the previous activity and
figuring out what to do when these contexts occur in this activity, an
informal CoCon-Rule should be written down for each action as described
in section [7.2.2] This informal CoCon-Rule should refer to the system
elements involved via the criteria for deciding whether the context occurs.

After writing down the informal CoCon-Rules, the next section maps
them to CCL.

7 The CCL Analysis & Specification Method CCLM 106

7.2.8 Context-Driven CoCon Family Identification

The activity presented in the previous section results in informal CoCon-
Rules. This section describes the third activity of the context-driven
approach. It helps to identify which of the informal CoCon-Rules can
be expressed in CCL. One of following questions should apply to each
informal CoCon-Rule:

1. Does the informal CoCon-Rule demand that certain users or com-
ponents must (not) be able to access certain other components or
business objects? If yes, then it can be specified in CCL via an
access permission CoCon. In that case, please refine the informal
access permission CoCon-Rule as follows: Does the business rule
address general access, or does it particularly address only read ac-
cess, write access or delete access? If appropriate, refine your initial
access permission CoCon-Rule.

2. Does the informal CoCon-Rule demand that certain workflows should
be protected by transactions? Does it demand to use time-critical
synchronous communication or asynchronous communication, e.g.
in message broker applications or in mobile devices? Does it de-
mand to encrypt, log or redirect certain communication calls be-
tween components? If any answer is yes here, then it is an informal
communication CoCon-Rule. In that case, answer the following
questions for each informal communication CoCon-Rule:

e Which components should be protected via transaction? For
instance, it can be useful to protect all components that are
needed in a certain workflow in order to protect this workflow.

o If the whole system shall use the same communication tech-
nique throughout its lifetime then skip these questions:

— Which components should communicate synchronously with
which other components?

— Which components should communicate asynchronously
with which other components? For instance, message bro-
ker applications or mobile devices typically communicate
asynchronously.

e Which components should encrypt their communication when
calling which other components?

e Which communication calls shall be logged according to which
context of the caller or callee?

e If an error occurs during a communication call, which calls
shall be treated specially?

3. Does the informal CoCon-Rule demand that to distribute certain
components or data to certain computers? If the answer is yes here,
then it is an informal distribution CoCon-Rule. In that case, answer
the following questions for each informal distribution CoCon-Rule:

e Which components or business object must (not) be available
on which computers? For instance, a workflow can be exe-
cuted on a certain computer even if the network crashed if
all components needed in this workflow are available on this
computer.

7 The CCL Analysis & Specification Method CCLM 107

Enhancing CCL?

e Check each initial distribution CoCon, if the involved com-
ponents or business objects shall be allocated or replicated
(copied). If they are replicated, should the be replicated syn-
chronously (time-critical) or asynchronously (better for unsta-
ble networks)?

4. Does the informal CoCon-Rule demand that to provide the right
information only when it is required and where it is required? If the
answer is yes here, then it is an informal information-need CoCon-
Rule. In that case, answer the following questions for each informal
information-need CoCon-Rule:

e Which users should (not) be notified of which documents or
business objects? Write down this business rule via an infor-
mal CoCon-Rule as described in section [7.2.2]

e If a user is notified of certain documents or business objects,
which other documents or business objects are (not) as inter-
esting for every user of the system? Should the user be notified
of these other documents or business objects, too?

5. Does the informal CoCon-Rule demand that an element having cer-
tain context property values must (not) have certain other context
property values? If the answer is yes here, then it is an informal
inter-value CoCon-Rule. In that case, answer the following ques-
tions for each informal inter-value CoCon-Rule: Moreover, informal
inter-value CoCon-Rules should always be considered if any CoCons
are used at all.

e If an element has a certain context property value, which other
context property values must it (not) have?

e For each informal inter-value CoCon-Rule please state if it is
bi-directional (symmetric) or not:

— A uni-directional inter-value CoCon defines a directed de-
pendency between context property values. For instance,
an uni-directional CoCon can state that all books where
the ‘author’= ‘J.K. Rowling’ must have the ‘genre’ = ‘fan-
tasy’, but not all books of the of the ‘genre’ = ‘fantasy’
are written by the ‘author’= ‘J.K. Rowling’.

— A bi-directional inter-value CoCon defines a dependency
between context property values in both direction. For in-
stance, a bi-directional CoCon can state that all elements
where ‘Personal Data’ has the value ‘True’ must not have
the value ‘False’ for ‘Personal Data’ and vice versa: all
elements where ‘Personal Data’ has the value ‘False’ must
not have the value ‘True’ for ‘Personal Data’

If an informal CoCon-Rule does not fit to any of the questions listed
above then CCL is not capable to express this requirements. In that
case, maybe a new CoCon-predicate was discovered and can be added to
CCL as described in section B.3.5l If none of the informal business rules
fits to the questions listed above then the context-driven approach ends
here because CCL cannot express any of the informal business rules.

7 The CCL Analysis & Specification Method CCLM 108

7.3 The Requirements Negotiation Phase of CCLM

WinWin

Priority

As result of the previous CCLM requirements elicitation phase, informal
CoCon-Rules and context property candidates have been written down.
The results of the context-driven requirements elicitation can be com-
bined with the results of the rule-driven requirements elicitation in order
to improve the overall quality. Before precisely specifying them in a for-
mal language in the next CCLM phase, the informal CoCon-Rules are
negotiated between all stakeholders in order to arrive at a set of agreed
upon requirements. In order to negotiate informal CoCon-Rules, CCLM
adopts a popular model for requirements negotiation: the WinWin nego-
tiation model is based on the Theory W ([FU8I, IBR89]).

Win
Conditions

<—involve
‘ “

Issues ¢—address

Options

cover Agreements

Figure 7.4: The WinWin Negotiation Model

WinWin is based on four artefact types as depicted in figure [7.4 Win
Conditions, Issues, Options and Agreements. Win conditions capture
the stakeholder goals and concerns with respect to the new system. An
informal CoCon-Rule that has not been negotiated yet is a win condition.
If a Win condition is non-controversial, it is adopted by an Agreement.
Otherwise, an Issue artefact is created to record the resulting conflict
among Win Conditions. It should list both the contradicting CCL ex-
pressions and the model or system elements involved in the conflict in
order to negotiate the contradicting CCL expressions with the stakehold-
ers. One of the benefits of CCL is that violated or contradicting Win
condition expressed in CCL can automatically be detected as described
in chapter Options allow stakeholders to suggest alternative solu-
tions, which address Issues. Finally, Agreements may be used to adopt
an Option, which resolves the Issue.

In case of two contradicting CCL expressions, different priorities can be
assigned to the CCL expressions involved as follows: a default CoCon
which applies to all elements where no other CoCon applies should have
the lowest priority. Default CoCons can be specified using a total selec-
tion as introduced in section CoCons selecting both their target
and their scope set indirectly should have middle priority. These con-
straints express the basic design decisions for two possibly large sets of
elements. CoCons selecting only element of either the target or the scope
set indirectly have high priority because they express design decisions for
one possibly large set of elements. CoCons that select both the target set

7 The CCL Analysis & Specification Method CCLM 109

Context Conditions

Choosing Relevant Artefact
Types

and the scope set directly should have the highest priority — they describe
exceptions for some individual elements.

The elements involved in an informal CoCon-Rule can both de directly
described via their name or indirectly described via a context condition.
An indirect description is called context condition because it refers to
the context in which the constrained element is used. For each context
condition, the business experts shout be asked the following questions in
order to prevent misleading requirements:

e Are the context condition are too general or too precise?

— A context condition is too general if it describes more elements
then it should.

— A context condition is too precise if it describes less elements
then it should.

Different software development processes use different artefact types, e.g.
different modelling or programming languages. As described in section
3.3.5] an artefact can be monitored for compliance with CoCons if the
artefact-type-specific semantics of those CoCon-predicates used in the
requirements specification are defined. The stakeholders should decide
which of the artefact types used in the software development process of
the planned product shall be monitored for compliance with CoCons. For
each artefact type considered as relevant, the artefact-type-specific Co-
Con semantics must exist. If they do not exist yet than it is expensive
to define them. Therefore, it should be negotiated with the stakeholders
which artefact type shall be monitored at which expenses. This issue is
addressed after requirements elicitation because it depends on the ap-
plication specific CoCons identified during requirements elicitation. If,
for example, all elicitated CoCons only have to be monitored at run-
time then only runtime artefacts must be considered when choosing the
relevant artefact types.

7.4 The CCL Specification Phase of CCLM

Requirements Specification

Requirements specification is the activity during which the requirements
are recorded. In CCLM, requirements specification consists of two activ-
ities that record those requirements that can be expressed in CCL: first,
context properties are applied to the system (model) as proposed in sec-
tion |[7.4.1] Then, CCL expressions are recorded as suggested in section
4.2

7.4.1 Context Property Application

Analysing Context Property
Candidates

In order to identify the relevant context properties, all context property
candidates should be written down on one sheet of paper — those that
describe a similar context should be grouped by writing them closely
together. As explained in section each context property consists of
its name and its allowed values — the context of an element is expressed
via metadata formatted as name and value(s).

For each context property candidate identified the business experts are
asked questions in order to find out whether it is a context property name
or a context property value:

o If this context property candidate is not similar to any of the other
context property candidates, then ask the following questions.

7 The CCL Analysis & Specification Method CCLM 110

Applying the Context
Property Values

Refinement in Later
Iterations

— Is it possible to describe the context property candidate via
a more abstract term that is also relevant in the application
domain? For instance, ‘confidence level’ might be a more ab-
stract term for ‘top-secret data’. In that case, the more ab-
stract term is the context property name, while the context
property candidate is an allowed context property value of
this context property name.

— If it is not possible to describe the context property candidate
via a more abstract term that is also relevant in the application
domain, then the context property candidate is the context
property name. Less abstract terms that describe the context
more closely will become the values of this context property.

e If this context property candidate is similar to any of the other
context property candidates, then ask the following questions.

— Is it possible to describe the context property candidate via
a more abstract term that is also relevant in the application
domain? If this more abstract term is among any of the other
similar context property candidates then the most abstract
term becomes the context property name. If none of the other
similar context property candidates is more abstract than the
others, then an additional more abstract term must be found.
For instance, ‘department’ might be a more abstract term for
‘field service’. In that case, the more abstract term is the
context property name, while the context property candidate
is an allowed context property value of this context property
name.

— If it is not possible to describe the similar context property
candidates via a more abstract term that is also relevant in
the application domain, then the context property candidates
are not similar and must be handled individually as described
above.

Now, the identified context properties should be written on a new sheet
of paper in the format ‘context property name: allowed context property
value(s)’.

If no system artefact exists yet, then context property application ends
here. Else, the elements of the system artefacts are associated with their
context property values. An example is demonstrated in figure [3.1] on
page One element can belong to several contexts.

The following part of this section can be skipped if this is the first CCLM
iteration. The questions proposed next refine the results gathered in
previous iterations of this activity. For each identified context property
name the business experts are asked the following questions:

e Who knows details about this context property? In which docu-
ment(s) are the details defined?

e How can this context be detected? Which criteria exist for deciding
whether the context occurs or not?

e Does a software system manage the information for deciding whether
an element is in this context or not? If yes, then the current value
of this context property for a certain element can be extracted au-
tomatically. Automatically extractable values are trustworthier be-

7 The CCL Analysis & Specification Method CCLM 111

7.4.2

Define Dependencies

Responsibilities

CCL Specification

CoCon Specification

cause they are always up-to-date. The following questions facilitate
to find out how the context property value of an element can be
extracted:

— Does the software system manage this property? Do other
software systems manage this property? Does the operation
system manage this property?

— Can the current value be calculated from other information
managed by software systems? If yes, then write down the
algorithm how to calculate the current context property value
of an element.

e The following questions address dependencies between context prop-
erty values:

— Which values are allowed for this context property? For ex-
ample, the names of the most frequent workflows in the ap-
plication domain are allowed values of the context property
‘Workflow’.

— Can all allowed values of this context property be associated
with one element without contradicting another context prop-
erty value? If no, then inter-value constraints between these
contradicting context property values exist. Write them down
via inter-value CoCons.

— Does any allowed value of this context property demand that
another context property value must be associated with the
same element.? If yes, then inter-value constraints between
these context property values exist. Write them down via
inter-value CoCons.

— Do certain values of this context property depend on anything?
For example, they could depend on the current state of the
associated element. If yes, write down these dependency in
round brackets behind the dependent context property value
as proposed in section [£.5.2]

As explained in section[£.5.2] context that depends on information stored
in some software system can automatically be extracted from the system
each time the context is queried. As a result, the current context value
is always available and up-to-date as long as the information on which it
depends is available and up-to-date. CCL needs available and up-to-date
context property values. Therefore, it is useful to write down how which
context of which element can be extracted from where.

In order to prevent wrong, outdated or missing context property val-
ues, a policy could be created that defines who maintains which context
properties values. If people know who is responsible for which context
property value they hopefully maintain at least those for which they are
responsible.

Each informal CoCon-Rule is now expressed in CCL. Each CoCon has a
target set and a scope set. These sets contain the constrained elements
of the CoCon. We can select the elements of theses sets both directly
via their name or indirectly via a context condition. Both direct and
indirect selections can be derived from the description of constrained

7 The CCL Analysis & Specification Method CCLM 112

elements in the informal CoCon-Rule. In case of an indirect selection,
the context condition should refer to context property values or context
property names identified in the previous context property application
phase. If the context property used in the informal CoCon-Rule is not
listed among the known context properties of this system (model), than
step back to the context property application phase and add this context
property candidate to the system artefacts.

Refinement in Later The following part of this section can be skipped if this is the first CCLM
Iterations iteration. The questions proposed next refine the results gathered in
previous iterations of this activity. Constraints do not tell what happens
when a constraint is violated. An expression that also specifies event(s)
and action(s) is called rule. A CoCon can be turned into a CoCon-Rule
by adding actions and events to it.

Actions A CoCon relates each element in its target set to each element in its
scope set and defines a condition between each pair of related elements.
As explained in section the CoCon attribute COMPLIANCE-ACTION
describes what action must be taken if two elements are related via
this CoCon and comply with the CoCon. It corresponds to the THEN
part in an IF-THEN-ELSE expression. Moreover, the CoCon attribute
VIOLATION-ACTION specifies what action must be taken if two elements
are related via this CoCon but don’t comply with the CoCon. It cor-
responds to the ELSE part in an IF-THEN-ELSE expression. For each
CoCon, the business experts are asked the following questions in order
to add actions:

e Who is responsible for deciding upon the action? Is it single or a
collaborative decision?

e Which information is required in order to fulfil this action?

e Which COMPLIANCE-ACTION shall be executed if two elements are
related via this CoCon and fulfil the condition expressed via the

CoCon?

e Which VIOLATION-ACTION shall be execute if two elements are re-
lated via this CoCon but violate the condition expressed via the
CoCon?

e Can a software system automatically decide what to do? If yes,
write down the criteria.

Events For each CoCon, the business experts are asked the following questions
in order to add events:

e Which events trigger the occurrence of the context? When should
the CoCon be checked?

e Is it easier to automatically detect the event than to automatically
evaluate the corresponding context condition? In that case, the
event should be preferred

7.5 The CCL Validation Phase of CCLM

Requirements validation is the activity during which the requirements are
checked for omitted, extra, wrong, ambiguous and inconsistent require-
ments In the previous requirements specification phase of CCLM, context
properties have been associated with the system artefact elements, and
CoCons have been specified in CCL. As a result, the algorithms presented

7 The CCL Analysis & Specification Method CCLM 113

in chapter [4] can automatically detect violated or contradicting require-
ments if the requirements have been expressed in CCL. A system can be
validated for whether it complies with the CCL expressions during design,
during configuration and at runtime because the CCL expressions are
artefact-type-independent. Two prototypical tools for validating UML
models during design or Enterprise Java Beans at runtime have been
sketched in section [£:4] Automated validation tests provide assurance
that the system artefacts meet the requirements specified via CCL.

8. Conclusion

8.1 Summary

Problems

Goals

Solution

First, section [8.1] will summarize this thesis. Afterwards, section [8.2] will
recommend future research topics. Finally, section [8.3] will discuss the
limitations, and section will explain the benefits of the presented
approach.

Checking complex systems for compliance with requirements is difficult
because one requirement can affect several possibly unassociated sys-
tem elements. It is expensive to check which of the system’s frequently
changing data handled by which of its frequently changing components
deployed on which of its frequently changing computers in which of its
frequently changing contexts are affected by which requirements.

In this thesis, I present a new solution for writing down and monitoring
crosscutting requirements for complex systems. The objectives of my
approach are explained in section [2:3}

e One system consists of different artefact types. My approach does
not apply to only one artefact type - it is independent of artefact

types.

e One system consists of many elements in many artefacts. My ap-
proach is adaptive: it enables us to identify the elements affected
by a requirement automatically.

e My approach enables us to detect violated or contradicting require-
ments automatically.

In order to meet these objectives described above, I present the follow-
ing solution: a context-based constraint (CoCon) can indirectly select its
constrained elements according to their context property values. It ex-
presses a condition on how its constrained elements must relate to each
other.

In my research I have examined three questions:

e How do we manage context? Section has presented a context
schema for expressing context. Any context-based approach fails if
the context information is wrong, outdated or missing. Therefore ,
section [£.5] has discussed how to maintain context information.

e How do we write down constraints based on context? Chapter
has defined context-based constraints in general, and chapter [5| has
proposed 22 different CoCon-predicate for component-based sys-
tems. In addition, chapter [7] has provided methodical guidance on
how to elicitate and write down contexts and CoCons relevant for
a particular application.

e How do we apply context-based constraints after they have been
written down? Chapter [has examined algorithms for detecting vi-
olated or contradicting CoCons in general and has outlined existing

114

8 Conclusion

115

proof-of-concept applications. Moreover, chapter [6] has suggested
how to apply CoCons to UML models and has compared CoCons
with UML’s standard constraint language OCL. This comparison
reveals why CoCons are a new concept.

Before discussing the limitations and benefits of my approach, I will sug-
gest future research topics.

8.2 Future Research Recommendations

N-Ary Relations

Grouping CoCons

Events and Actions

CoCons in Experts Systems

Fuzzy Contexts

In order to keep my approach simple, I only examined CoCons relate two
sets of system elements. One CoCon can express a relation between three
or more sets of elements, though. For example, a distribution CoCon
Cy(z,y, z) could state that ‘any x must be replicated from y to 2’. Or, a
communication CoCon C,(z,y, z) could express that ‘any x must encrypt
its communication with any y about topic z’. Or, an information need
CoCon Ci(x,y, z) could demand that ‘any user must be notified of any
user y who is notified of z’. Future research that examines CoCons on
more than two sets could discuss which n-ary relationships can or should
be transformed into binary CoCons. Moreover, it should discuss how to
handle the increased complexity of the algorithms for detecting violated
or contradicting CoCons.

The grammar of CCL does not consider composition of CoCons for groups
of policies. An interesting approach for grouping policies is presented in
[Dam02]. CoCons could be adapted to this or other policy grouping
approaches.

Events and actions for CoCon-rules are not deeply considered here. Fu-
ture research could examine which events and which actions of which
CoCon-type are useful for which artefact type.

In chapter [] algorithms for detecting CoCon-violations or inter-CoCon
conflicts have been discussed. They only consider inter-CoCon conflicts
between CoCons of one family. Future research could additionally ex-
amine inter-CoCon-family conflicts. For instance, can access permission
CoCons contradict communication CoCons? Furthermore, CoCons could
be applied to expert systems: an inference engine could derive (or infer)
additional insights from a knowledge base. Two methods of inference are
often used: forward and backward chaining. Forward chaining is a top-
down method that takes facts as they become available and attempts to
draw conclusions (from satisfied conditions in rules) that lead to actions
being executed. Backward chaining is the reverse. It is a bottom-up
procedure that starts with goals (or actions) and queries the user about
information that may satisfy the conditions contained in the rules. Fu-
ture research could examine how to use CoCons in forward or backward
chaining. For instance, an inference engine could verify inter-CoCon con-
flicts in order to achieve more insights than those inter-CoCon conflicts
discussed in section

For some contexts it cannot be clearly decided if an element fully resides
in this context or not. For example, the time or the location of a context
can be fuzzy: when and where did the Russian revolution happen? Dif-
ferent history experts give different and fuzzy answers - they hardly can
tell in which second and in which room the Russian revolutions started
or ended. Fuzzy logic can assist in expressing fuzzy context. A model for
fuzzy temporal context is proposed in [NMO03], and a model for fuzzy geo-

8 Conclusion

116

Applying CoCons during
Deployment

Enhancing Container
Services

graphical context is suggested in [JAF03]. Future research could examine
how to address fuzzy context models in CoCons.

During (re-)configuration, a CoCon-aware tool could automatically mon-
itor the system’s configuration files for compliance with CCL specifica-
tions. For instance, deployment descriptors of Enterprise Java Bean sys-
tems can be checked for compliance with CoCons. Among the CoCon
families presented here, distribution CoCons and communication CoCon
are best checked during deployment. Unfortunately, no case study exists
on checking configuration files for compliance with CCL expressions yet.

Some of the concepts that can be expressed via CoCons are not supported
by modern middleware platforms at runtime. If, e.g., a PROTECTED BY
A TRANSACTION WHEN CALLING CoCon refers to context property values
that change at runtime, then this CoCon demands that the transaction
mode of the components involved changes at runtime. But, dynamically
changing transaction modes are not supported by container services of
middleware platforms yet.

8.3 Limitations of CoCons

Trustworthy Context
property values

Terminology

Taking only the context property values of an element into account bears
some risks. How can we assure that the context property values are
always up-to-date and available? The following approaches can improve
the quality of context property values:

e The context property values of an element can automatically be
extracted from its software system. If the context property values
of an element are extracted newly each time when checked and if
the extraction mechanism works correctly, then the context prop-
erty values are correct and up-to-date as discussed in section [5.5.5)
Moreover, the extraction mechanism ensures that context property
values are available at all.

e Contradicting context property values can automatically be pre-
vented via inter-value constraints as explained in section [5.6.2

e Additional Context property values can automatically be derived
from existing context property values via belongs-to relations as
explained in section [4.5.3]

e Whoever holds the responsibility for the values must be trustwor-
thy. Confidence can be assisted with security techniques as, e.g.,
public-key infrastructures.

e A policy could defines who maintains which context properties val-
ues as suggested in section

Within one system, only one terminology for context property values
should be used. For instance, the workflow ‘Create Report’ should have
exactly the same name and the same meaning in every part of the sys-
tem, even if different companies manufacture or use its parts. Otherwise,
a context condition referring to the workflow ‘Create Report’ might se-
lect the too many or too few elements. If more than one terminology for
context property values is used, correspondences between heterogeneous
context property values can be expressed via correspondence techniques,
e.g. Model Correspondence Assertions ([Bus02]). However, not every vo-
cabulary problem can be solved via engineering techniques. These tech-
niques can reduce the heterogeneity, but cannot overcome it completely.

8 Conclusion

117

Hence, the need for a controlled terminology remains the key limitation
of CoCons.

8.4 Benefits of CoCons

Context Properties

Automatically Detectable
Conflicts

Artefact-Type Independent

Comprehensibility

Coping with Complex
Systems

Evolution

CoCons select their constrained system elements via the element’s context
properties. In contrast to other grouping techniques, e.g. packages or
stereotypes, context properties can dynamically group elements even at
runtime. Furthermore, the assist in handling sets of elements that share a
context even across different element types, artefact types, or platforms.
They also help to express requirements affecting several elements that
are not associated with each other or even belong to different artefacts.

Algorithms for automatically detecting both violated and contradicting
CoCons have been presented. CoCons support the design of software
systems from the start of the development process. In contrast to OCL
constraints, CoCons specified during modelling can already be checked
during modelling at the same metalevel. Hence, the model can be checked
for violated or contradicting CoCons already during modelling. Further-
more, inter-CoCon conflicts can even be detected if the precise semantics
of the checked system artefact are unknown.

The same CoCon used to check the system model can also be used to
check other system artefact for violated or contradicting requirements
because CoCons specify requirements at an artefact-type-independent,
abstract level. Therefore, they enable us to validate different software
development artefacts for compliance with the same CoCon during mod-
elling, during deployment and at runtime.

The specification of a system should serve as a document understood
by designers, programmers, and customers. CoCons can be specified
in easily comprehensible, straightforward language that assists every En-
glish speaking person in understanding their design rationale. As demon-
strated in appendix[B] a CoCon can be translated into an artefact-specific
constraint which is much longer and much more complicated than the
corresponding CoCon. The effort of writing down a requirement in the
minutest details is unsuitable if the details are not important. CoCons
facilitate staying on an abstract level that eases requirements specifica-
tion.

The people who need a requirement to be enforced do often neither know
all the details of every part of the system (glass box view) nor do they
have access to the complete source code, model or configuration files. It
can be unknown which elements are involved in the requirement when
we specify it via CoCons. Software tools that check the system artefacts
for violated or contradicting CoCons will identify those elements that are
involved in the requirement automatically. CoCons help us to specify
requirements because it is easier to write down a requirement if we don’t
have to list all of the elements that are affected by the requirement. By
using CoCons, we don’t have to understand every detail of the system.
Instead, we only need to understand the context property values we use
for describing the context of the system elements.

When adapting a system to new requirements, existing dependencies and
invariants should not be violated. CoCons help us to ensure consistency
during system evolution. A context-based constraint serves as an in-
variant and, thus, prevents the violation of requirements during modi-
fications of the system artefacts. It assists in detecting when design or

8 Conclusion

118

context modifications compromise intended functionality. Hence, CoCons
help us to prevent unanticipated side effects during (re-)design, during
(re-)configuration and at runtime. Requirements tend to change quite
often. Indirectly selecting the elements involved improves adaptability
because every new or changed element is constrained automatically if it
fits to the context condition. The context property values can be easily
adapted whenever the context of an element changes. Furthermore, each
modified or additional CoCon can automatically be enforced and any re-
sulting conflicts can be identified. It is changing contexts that drive evo-
lution. CoCons are context-based and are therefore easily adapted if the
contexts, the requirements, or the configuration changes — they improve
the traceability of contexts and requirements. According to [MDO00], au-
tomated support for software evolution is central to solving some very
important technical problems in current day software engineering.

Appendix A. The Textual Syntax of CCL

Refined CoCon Syntax A common syntax for CoCons is defined in section [3.3.2] This ap-
pendix refines the common CoCon syntax in order to reflect the 22
CoCon-predicates introduced in chapter [5| Hence, it defines the syntax
of the Context-Based Constraint Language CCL. It consists of CoCon-
predicates for defining requirements for component-based systems.

Syntax of the Context-Based Constraint Language CCL

CoConPredicate x= ‘ACCESSIBLE TO’ | ‘READABLE
BY’ | ‘WRITEABLE BY’ | ‘EX-
ECUTEABLE BY’ | ‘REMOVE-
ABLE BY’ | ‘CACHED WHEN
CALLING’ | ‘ENCRYPTED
WHEN CALLING’ | ‘ER-
RORHANDLED WHEN CALLING’
| ‘LOGGED WHEN CALLING’
| ‘PROTECTED BY A TRANS-
ACTION WHEN CALLING’ |
‘ASYNCHRONOUSLY CALLING’
| ‘SYNCHRONOUSLY CALLING’

| “ALLOCATED TO’ | ‘SYN-
CHONOUSLY REPLICATED TO’
| “ASYNCHONOUSLY REPLI-

CATED TO’ | ‘NOTIFIED OF’ |
‘AS INTERESTING AS’ | ‘AVAIL-
ABLE TO ANYONE INTERESTED
IN’ | ‘AS INTERESTED AS’ |
‘NOTIFIED OF THE SAME AS’ |
‘THE SAME AS’ | ‘FULFILLING
THE CONTEXT CONDITION OF’

ElementType x= ‘ELEMENT’ | ‘COMPONENT" |
‘CONTAINER’ | ‘COMPUTER’ |
‘USER’

ElementTypes x= ‘ELEMENTS’ | ‘COMPONENTS’

| ‘<CONTAINERS’ | ‘COMPUT-
ERS’ | ‘USERS’

Keep it Simple As explained in section[5.6.2} one the FULFILLING THE CONTEXT CONDITION
OF CoCons can be abbreviated in order to keep CCL comprehensible for
human readers. Hence, the following rule is added to the BNF syntax
definition given in section [3.3.2

Syntax of FULFIL THE CONTEXT CONDITION CoCons

FTCCCoCon n= TargetSet ‘MUST’ [‘NOT’] ‘FUL-
FIL THE CONTEXT CONDI-
TION"’ ContextCondition [‘WITH?’
(Attribute) x4V P]

Other CoCon-predicates The list of CoConPredicates and ElementType(s) listed above is incom-
plete. It is tailored for one application domain: only requirements for

119

Appendix A The Textual Syntax of CCL 120

component-based systems are addressed. Moreover, the ElementType(s)
only consider a few of the metatypes. For instance, they do no dis-
tinguish between COMPONENT TYPES and COMPONENT INSTANCES. If other
ElementType(s) or CoConPredicates are important for expressing re-
quirements then the syntax of CCL can be adapted to new application
domains by adding the ElementType(s) or CoConPredicates to the BNF
rules listed above and defining their semantics. Applying CCL to other
application domains is not covered here, but it will probably result in
additional CoCon-predicates.

Appendix B. Translating Accessability CoCons into OCL

B.1 Overview

Example Diagram

Metamodel for Component
Types in UML 2.0

Classifier

Component (Type)

This appendix demonstrates how to map CCL to OCL as sketched in
section

The privacy policy of section 2.2] can be specified in CCL as follows:

ALL COMPONENTS WHERE ‘Personal Data’ = ‘True’
MUST NOT BE ACCESSIBLE TO ALL COMPONENTS WHERE
‘Workflow” CONTAINS ‘Create Report’

As illustrated via the dependency relationship (the dotted arrow) in the
UML component diagram shown in figure component type ‘A’ in-
vokes component type ‘B’. But, the privacy policy CoCon of section
does not allow that the component ‘A’ invokes the component ‘B’: the
diagram violates the privacy policy.

—_— T

\ | P
K Personal Data:True j\\ I B —Q/\/ A —7{ Operational Area: Controllingj

Figure B.1: A Component Diagram Showing Component Types that
violate the ‘Privacy Policy’ CoCon

Figure [B.2] shows the metaclasses of the model elements used in figure
[B1] Before translating the privacy policy CoCon in an OCL constraint,
those metaclasses relevant for the OCL constraint depicted in figure
are quickly explained.

A classifier is an element that describes behavioural and structural fea-
tures. In the metamodel, a Classifier declares a collection of Features,
such as Attributes, Methods, and Operations. Classifier is an abstract
metaclass.

A component represents a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a set of interfaces.
It is sometimes called ‘component type’ here in order to distinguish it
from the ‘component instance’. A component is shown as a rectangle
with two small rectangles protruding from its side.

A UML component diagram shows the dependencies among software com-
ponents. A component diagram has only a type form, not an instance
form. Component instances are defined in UML deployment diagrams.
A component diagram is a graph of components connected by depen-
dency relationships. Components may also be connected to components
by physical containment representing composition relationships. Com-
ponents typically expose a set of interfaces, which represent the services
provided by the elements that reside on the component. The diagram

121

Appendix B Translating Accessability CoCons into OCL 122

Interface

Dependency

‘ Abstraction ‘

s

‘ Dependency }7

* +supplierDependency * +clientDependency

e +supplier 4" +client

‘ ModelElement ‘

B V4

‘ GeneralizableElement ‘ ‘ Relationship
‘ Classifier ‘

Interface ‘ ‘ Component

Figure B.2: UML 2.0 Metaclasses For Component Types in Component
Diagrams

may show these interfaces and calling dependencies among components,
using dashed arrows from components to interfaces on other components.

An interface is a named set of operations that characterize the behaviour
of an element. An interface is formally equivalent to an abstract class with
no attributes and no methods and only abstract operations. An interface
may also be displayed as a small circle with the name of the interface
placed below the symbol. The circle may be attached by a solid line
(representing an <realize> abstraction as explained next) to classifiers
that support it. A class or component that uses or requires the operations
supplied by the interface may be attached to the circle by a dashed arrow
pointing to the circle. The dashed arrow implies that the class requires no
more than the operations specified in the interface; the client class is not
required to actually use all of the interface operations. The Realization
relationship from a classifier to an interface that it supports is shown by
a dashed line with a solid triangular arrowhead (a ”dashed generalization
symbol”). This is the same notation used to indicate realization of a type
by an implementation class.

A dependency indicates a semantic relationship between two model el-
ements (or two sets of model elements). It relates the model elements
themselves and does not require a set of instances for its meaning. It
states that the implementation or functioning of one or more elements
requires the presence of one or more other elements. In the metamodel, a
Dependency is a directed relationship from a client (or clients) to a sup-
plier (or suppliers) stating that the client is dependent on the supplier;
that is, the client element requires the presence and knowledge of the
supplier element. A dependency is shown as a dashed arrow between two
model elements. The model element at the tail of the arrow (the client)
depends on the model element at the arrowhead (the supplier).

Appendix B Translating Accessability CoCons into OCL 123

Abstraction An abstraction is a Dependency relationship that relates two elements
or sets of elements that represent the same concept at different levels of
abstraction or from different viewpoints.

Realization One of the UML standard stereotyped classes of Abstraction is Realiza-
tion (This is the names for the Abstraction class with the stereotypes
<realize> respectively). In figure the interface of component ‘B’ is
realized by component ‘B’.:

UML Association enables In UML, a binary association is drawn as a solid line connecting two clas-
OCL Navigation sifier symbols. According to [WK99|, each association defines navigation:
a shift of attention from one ModelElement to the opposite ModelEle-
ment. The name of the navigation is the role name at the opposite end of
the association. If a role name is missing, the name of the navigation is
the name of the ModelElement (starting with a lower case letter) at that
end of the association. The dot-notation is used to reference navigations.
The OCL expression presented next uses the dot-notation to navigate
along associations between metaclasses.

‘naive’ OCL The ‘Privacy Policy’ CoCon in section[5.2.4]can incompletely be expressed
for component (types) in OCL on My (metamodel) level of UML 2.0 as:

context component inv:
self.taggedvalue->select(tv | tv.dataValue = "Create
Report")
.type -> select(td | td.name = "Workflow")
-> notEmpty()
implies self.clientDependency.supplier
-> select(i | i.oclIsTypeOf (Interface))

.clientDependency
-> select(d | d.o0clIsKindOf (Abstraction)
and d.stereotype.name = "realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf (Component))
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")
-> Empty()

Component

<<oclOperation>> invokesComponentTypesViaDependency(): Set(Component)

Figure B.3: Metaclass Component with a Virtual OCL Operation

Using OCL Operations The expression above consists of three parts. It starts with the trans-
lated version of the target set context condition. Then, the artefact-type-
specific semantics of ACESSIBLE TO CoCons is expressed, before the scope
set context condition is specified. The middle part — the ACCESSIBLE TO
CoCon-predicate semantics— can be expressed as a virtual OCL operation
of Component. Expressing the CoCon-predicate via an OCL operation
encapsulates the important part of the OCL expression given above in
order to reuse this part later on in other OCL expressions. This virtual
operation is illustrated in figure The ‘...” dots indicate, that the
other properties of the metaclass Component are not changed. Accord-
ing to [WK99], the stereotype <oclOperations defines two things about

Appendix B Translating Accessability CoCons into OCL 124

an operation:

e The operation is added to the (meta-)model for the purpose of using
it in OCL expressions

e The operation does not need to appear in any instance of this meta-
class. It is use for OCL specification purpose only

OCL operation for The following OCL operation specifies the artefact-type-specific seman-
Component Type tics of ACCESSIBLE TO CoCons for component types:

Dependencies context component::invokedComponentTypesViaDependency ()

Set (Component)
post: result = self.clientDependency.supplier
-> select(i | i.0clIsTypeOf (Interface))

.clientDependency
-> select(d | d.oclIsKindOf (Abstraction)
and d.stereotype.name = "realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf (Component))

OCL for Component Type This OCL operation can be applied in order to specify a part of the
Dependencies ‘Privacy Policy’ (see section [5.2.4) in OCL:

context component inv:
self.taggedvalue->select(tv | tv.dataValue = "Create
Report")
.type -> select(td | td.name = "Workflow")
-> notEmpty ()

implies self.invokedComponentTypesViaDependency ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")
-> Empty ()

a implies b The ‘implies’ operation used above states that when the first part is true
then the second part must be true. This OCL expression covers only a
tiny part of the semantics of the ‘Privacy Policy’ CoCon in section
though. The missing parts are discussed in the next sections.

B.2 Artefact-Specific Semantics for UML

The previous section has explained the concept of OCL operations. This
section lists all OCL operations needed to map the ‘Privacy Policy’ CoCon
of section into OCL without explaining each OCL operation.

context component: :invokedComponentTypesViaDependency ()
Set (Component)
post: result = self.clientDependency.supplier
-> select(i | i.oclIsTypeOf (Interface))

Component Types via .clientDependency
Dependency -> select(d | d.oclIsKindOf (Abstraction)
and d.stereotype.name = "realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf (Component))

Appendix B Translating Accessability CoCons into OCL 125

context componentinstance::invokedComponentInstancesViaDependency ()
Set (ComponentInstance)
post: result = self.classifier
-> select(c | c.oclIsTypeOf (Component))
.invokedComponentTypesViaDependency ()
.instance -> select(i | i.oclIsKindOf(ComponentInstance))

Component Instances via
Dependency

context componentinstance::invokedComponentInstancesViaMessage ()
Set (ComponentInstance)
post: result = self.playedRole

Component Instances via .
.message.receiver

Message .conforminginstance -> select(c
c.oclIsTypeOf (ComponentInstance))
context componentinstance::invokedComponentInstancesViaStimulus()
Set (ComponentInstance)
Component Instances via post: result = self.stimulus
Stimulus .receiver -> select(c | c.oclIsTypeOf (ComponentInstance)

)

context componentinstance::invokedComponentInstancesViaLink()
Set (ComponentInstance)
post: result = self.linkEnd.link
.stimulus.communicationLink.connection
.instance -> select(c | c.oclIsTypeOf (ComponentInstance)

)

Component Instances via
Link

UML Components The next OCL statements refer to classes or objects (instances of classes)
because the UML components approach described in [CD00] uses stereo-
typed classes to model components. Hence, the OCL statemments re-
ferring to classes or objects are only needed if the UML Components
approach is used.

context class::invokedClassesViaDependendInterface()
Set(Class)
pre: self.stereotype.baseClass = "comp spec"
post: result = self.clientDependency.supplier
-> select(i | i.0c1lIsTypeOf (Interface))

Classes via Dependend .clientDependency
Interface -> select(d | d.oclIsKindOf (Abstraction)
and d.stereotype.name = "realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf(class)

and c.stereotype.baseClass = "comp spec")
context class::invokedClassesViaDependendClass() : Set(Class)
pre: self.stereotype.baseClass = "comp spec"

post: result = self.clientDependency.supplier
-> select(i | i.0c1lIsTypeOf(Class)

and i.stereotype.name = "interface type")
Classes via Dependend .clientDependency
Class -> select(d | d.oclIsKindOf (Abstraction)
and d.stereotype.name = "realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf(class)
and c.stereotype.baseClass = "comp spec")

Appendix B Translating Accessability CoCons into OCL 126

context class::invokedClassesViaDependency() : Set(Class)
Classes via Dependency post: result = self.invokedClassesViaDependendClass()
->union(self.invokedClassesViaDependendInterface())

context object::invokedCompSpecObjectsViaDependency ()
Set(Object)
pre: self.classifier.stereotype.baseClass = "comp spec"
post: result = self.clientDependency.supplier
-> select(i | i.0c1lIsTypeOf (Interface))

Objects via Dependency .clientDependency
-> select(d | d.oclIsKindOf (Abstraction)
and d.stereotype.name = "realize"

and d.supplier.oclIsKindOf (Classifier))
.supplier -> select(c | c.oclIsTypeOf (object)
and c.classifier.stereotype.baseClass = "comp spec")

context object::invokedObjectViaMessage() : Set(Object)
pre: self.classifier.stereotype.baseClass = "comp spec"
post: result = self.playedRole
.message.receiver
.conforminginstance -> select(c | c.oclIsTypeOf (Object)

Objects via Message

and c.classifier.stereotype.baseClass = "comp spec")
context object::invokedObjectViaStimulus() : Set(Object)
pre: self.classifier.stereotype.baseClass = "comp spec"
Object via Stimulus post: result = self.stimulus
.receiver -> select(c | c.oclIsTypeOf(Object)
and c.classifier.stereotype.baseClass = "comp spec")
context object::invokedObjectInstancesVialLink() : Set(Object)
pre: self.classifier.stereotype.baseClass = "comp spec"

post: result = self.linkEnd.link
.stimulus.communicationLink.connection
.instance -> select(c | c.oclIsTypeOf(Object)
and c.classifier.stereotype.baseClass = "comp spec")

Object via Link

Composition Composed components can be expressed via UML. Therefore, the artefact-
specific semantics of ACCESSIBLE TO CoCons for UML models need to
consider composition, too.

context component::
invokedComposedComponentTypesViaDependency ()
Set (Component)
post: result = self.invokedComponentTypesViaDependency ()
->union(associationEnd
-> select(a | a.aggregation = "composite")
.participant
-> select(c | c.oclIsTypeOf (Component)))

Composed Component
Types via Dependency

context class::

invokedComposedClassesViaDependency() : Set(Class)
pre: self.stereotype.baseClass = "comp spec"
post: result = self.invokedClassesViaDependency ()

->union(associationEnd
-> select(a | a.aggregation = "composite")
.participant
-> select(c | c.oclIsTypeOf(class)))

Composed Classes via
Dependency

Appendix B Translating Accessability CoCons into OCL 127

context

post:
Composed Component
Instances via Dependency

context

post:
Composed Objects via
Dependency

context

pre:
Composed Objects via
Message

context

pre:

. . t:

Composed Objects via pos

Stimulus

context

pre:

. . . t:

Composed Objects via Link pos

context

post:

if

then

else

Component Types via
Rekursive Dependency

componentinstance::

invokedComposedComponentInstancesViaDependency ()
Set (ComponentInstance)
result = self.invokedComponentInstancesViaDependency ()
->union(associationEnd

-> select(a | a.aggregation = "composite")

.participant
-> select(c | c.oclIsTypeOf (componentinstance)))

object::
invokedComposedObjectsViaDependency() : Set(Object)
result = self.invokedObjectsViaDependency()
->union(associationEnd
-> select(a | a.aggregation = "composite")
.participant
-> select(c | c.oclIsTypeOf(Object)))

object::
invokedComposedObjectViaMessage() : Set(0Object)
self.invokedObjectViaMessage ()
->union(associationEnd
-> select(a | a.aggregation = "composite")
.participant
-> select(c | c.oclIsTypeOf (object)))

object::
invokedComposedObjectViaStimulus() : Set(Object)
self.classifier.stereotype.baseClass = "comp spec"

result = self.invokedObjectViaStimulus()
->union(associationEnd
-> select(a | a.aggregation = "composite")
.participant
-> select(c | c.oclIsTypeOf (object)))

object::
invokedComposedObjectInstancesVialink() : Set(Object)
self.classifier.stereotype.baseClass = "comp spec"

result = self.invokedObjectInstancesViaLink()
->union(associationEnd
-> select(a | a.aggregation = "composite")
.participant
-> select(c | c.oclIsTypeOf (object)))

component: :
invokedComponentTypesViaDependency-up-to(n)

Set (Component)

result =

(n==1)

invokedComponentTypesViaDependency ()

invokedComponentTypesViaDependency ()

->union(invokedComponentTypesViaDependency ()
.invokedComponentTypesViaDependency-up-to(n-1))

Nat->forall(n |
invokedComponentTypesViaDependency-up-to(n) =
invokedComponentTypesViaDependency-up-to(n+1)

implies invokedComponentTypesViaDependency() =
invokedComponentTypesViaDependency-up-to(n))

Appendix B Translating Accessability CoCons into OCL 128

Recursively Composed
Component Types

Classes via Recursive
Dependency

Recursively Composed
Classes via Dependency

context

post:
if
then
else

context

post:
if
then
else

context

post:
if
then
else

component: :
invokedComposedComponentTypesViaDependency-up-to(n)
Set (Component)

result =

(n==1)

invokedComposedComponentTypesViaDependency ()

invokedComposedComponentTypesViaDependency ()

->union(invokedComposedComponentTypesViaDependency ()
.invokedComposedComponentTypesVia-

Dependency-up-to(n-1))

Nat->forall(n |
invokedComposedComponentTypesViaDependency-up-to(n) =
invokedComposedComponentTypesViaDependency-up-to(n+1)

implies invokedComposedComponentTypesViaDependency() =
invokedComposedComponentTypesViaDependency-up-to(n))

class::

invokedClassesViaDependency-up-to(n)
Set(Class)

result =

(n==1)

invokedClassesViaDependency ()

invokedClassesViaDependency ()

->union(invokedClassesViaDependency ()
.invokedClassesViaDependency-up-to(n-1))

Nat->forall(n |
invokedClassesViaDependency-up-to(n) =
invokedClassesViaDependency-up-to(n+1)

implies invokedClassesViaDependency() =
invokedClassesViaDependency-up-to(n))

class::

invokedComposedClassesViaDependency-up-to(n)
Set(Class)

result =

(n==1)

invokedComposedClassesViaDependency ()

invokedComposedClassesViaDependency ()

->union(invokedComposedClassesViaDependency ()
.invokedComposedClassesViaDependency-up-to(n-1))

Nat->forall(n |
invokedComposedClassesViaDependency-up-to(n) =
invokedComposedClassesViaDependency-up-to(n+1)

implies invokedComposedClassesViaDependency() =
invokedComposedClassesViaDependency-up-to(n))

Appendix B Translating Accessability CoCons into OCL 129

Component Instances via
Recursive Dependency

Objects via Recursive
Dependency

Objects via Recursive
Message

context

post:
if
then
else

context

post:
if
then
else

context

post:
if
then
else

componentinstance::

invokedComposedComponentInstancesViaDependency-up-to(n)
Set (Componentinstance)

result =

(n==1)

invokedComposedComponentInstancesViaDependency ()

invokedComposedComponentInstancesViaDependency ()

->union(invokedComposedComponentInstancesViaDependency ()
.invokedComposedComponentInstancesViaDependency-up-to(n-1))

Nat->forall(n |
invokedComposedComponentInstancesViaDependency-up-to(n)

invokedComposedComponentInstancesViaDependency-up-to(n+1)
implies invokedComposedComponentInstancesViaDependency ()

invokedComposedComponentInstancesViaDependency-up-to(n)

)

object::

invokedObjectsViaDependency-up-to(n)
Set(Object)

result =

(n==1)

invokedObjectsViaDependency ()

invokedObjectsViaDependency ()

->union(invokedObjectsViaDependency ()
.invokedObjectsViaDependency-up-to(n-1))

Nat->forall(n |
invokedObjectsViaDependency-up-to(n) =
invokedObjectsViaDependency-up-to(n+1)

implies invokedObjectsViaDependency() =
invokedObjectsViaDependency-up-to(n))

object::

invokedObjectViaMessage-up-to(n)
Set(Object)

result =

(n==1)

invokedObjectViaMessage ()

invokedObjectViaMessage ()

->union(invokedObjectViaMessage ()
.invokedObjectViaMessage-up-to(n-1))

Nat->forall(n |
invokedObjectViaMessage-up-to(n) =
invokedObjectViaMessage-up-to(n+1)

implies invokedObjectViaMessage() =
invokedObjectViaMessage-up-to(n))

Appendix B Translating Accessability CoCons into OCL

130

Recursively Composed
Objects via Dependency

Objects via Recursive
Stimulus

Recursively Composed
Objects via Stimulus

context

post:
if
then
else

context

post:
if
then
else

context

post:
if
then
else

object::
invokedComposedObjectViaMessage-up-to(n)
Set(Object)
result =
(n==1)
invokedComposedObjectViaMessage ()
invokedComposedObjectViaMessage ()
->union(invokedComposedObjectViaMessage ()
. invokedComposedObjectViaMessage-up-to(n-1))
Nat->forall(n |
invokedComposedObjectViaMessage-up-to(n) =
invokedComposedObjectViaMessage-up-to(n+1)
implies invokedComposedObjectViaMessage() =
invokedComposedObjectViaMessage-up-to(n))

object::

invokedObjectViaStimulus-up-to(n)
Set (Object)

result =

(n==1)

invokedObjectViaStimulus ()

invokedObjectViaStimulus ()

—->union(invokedObjectViaStimulus ()
.invokedObjectViaStimulus-up-to(n-1))

Nat->forall(n |
invokedObjectViaStimulus-up-to(n) =
invokedObjectViaStimulus-up-to(n+1)

implies invokedObjectViaStimulus() =
invokedObjectViaStimulus-up-to(n))

object::

invokedComposedObjectViaStimulus-up-to(n)
Set(Object)

result =

(n==1)

invokedComposedObjectViaStimulus ()

invokedComposedObjectViaStimulus ()

->union(invokedComposedObjectViaStimulus ()

.invokedComposedObjectViaStimulus-up-to(n-1))

Nat->forall(n |
invokedComposedObjectViaStimulus-up-to(n) =
invokedComposedObjectViaStimulus-up-to(n+1)

implies invokedComposedObjectViaStimulus() =
invokedComposedObjectViaStimulus-up-to(n))

Appendix B Translating Accessability CoCons into OCL 131

context object::
invokedObjectInstancesViaLink-up-to(n)
Set(Object)
post: result =
if (n==1)
then invokedObjectInstancesViaLink()
else invokedObjectInstancesViaLink()
->union(invokedObjectInstancesViaLink ()
.invokedObjectInstancesViaLink-up-to(n-1))
Nat->forall(n |
invokedObjectInstancesViaLink-up-to(n) =
invokedObjectInstancesViaLink-up-to(n+1)
implies invokedObjectInstancesViaLink() =
invokedObjectInstancesViaLink-up-to(n))

Objects via Recursive Link

context object::
invokedComposedObjectInstancesViaLink-up-to(n)
Set (Object)
post: result =
if (n==1)
then invokedComposedObjectInstancesViaLink()
else invokedComposedObjectInstancesViaLink()
—->union(invokedComposedObjectInstancesVialink()
.invokedComposedObjectInstancesViaLink-up-to(n-1))
Nat->forall(n |
invokedComposedObjectInstancesVialLink-up-to(n) =
invokedComposedObjectInstancesViaLink-up-to(n+1)
implies invokedComposedObjectInstancesVialLink() =
invokedComposedObjectInstancesVialink-up-to(n))

Recursively Composed
Objects via Link

These OCL expressions do not consider any recursively composed compo-
nents via any recursive invocation in order not to spoil too many pages.

B.3 The Privacy Policy in OCL

The Privacy Policy CoCon of section can be mapped into the follow-
ing OCL expression that use the OCL operations defined in the previous
section.

context component inv:
self.taggedvalue->select(tv | tv.dataValue = "Create
Report")
.type -> select(td | td.name = "Workflow")
-> notEmpty()

implies self.invokedComponentTypesViaDependency ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")
-> Empty()

Appendix B Translating Accessability CoCons into OCL 132

context

implies

context

implies

context

implies

context

implies

context

implies

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComponentInstancesViaDependency ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComponentInstancesViaMessage ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()
self.invokedComponentInstancesViaStimuli()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComponentInstancesViaLink()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()
self.invokedComponentInstancesViaMessage ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

Appendix B Translating Accessability CoCons into OCL 133

context

implies

context

implies

context

implies

context

implies

context

implies

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComponentInstancesViaStimulus ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComponentInstancesViaLink ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

component inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()

self.invokedClassesViaDependency ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedCompSpecObjectsViaDependency ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()

self.invokedObjectViaMessage ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

Appendix B Translating Accessability CoCons into OCL 134

context

implies

context

implies

context

implies

context

implies

context

implies

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()

self.invoked0ObjectViaStimulus ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()

self.invokedObjectInstancesVialink()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

component inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()
self.invokedComposedComponentTypesViaDependency ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

class inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()

self.invokedClassesViaDependency ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

componentinstance inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()
self.invokedComposedComponentInstancesViaDependency ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

Appendix B Translating Accessability CoCons into OCL 135

context

implies

context

implies

context

implies

context

implies

class inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComposedObjectsViaDependency ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()

self.invokedComposedObjectViaMessage ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty ()
self.invokedComposedObjectViaStimulus ()

.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty ()

object inv:

self.taggedvalue->select(tv | tv.dataValue = "Create
Report")

.type -> select(td | td.name = "Workflow")

-> notEmpty()
self.invokedComposedObjectInstancesViaLink ()
.taggedvalue -> select(tv | tv.dataValue = "True")
.type -> select(td | td.name = "Personal Data")

-> Empty()

Bibliography

[AB93]

[ABOS]
[AdaT79]

[AMBRO?]

[BBB*00]

[BCO4]

[Bec98]

[Ber02]

Robert Arnold and Shawn Bohner. Impact analysis - to-
wards a framework for comparison. In International Con-
ference on Software Maintenance (ICSM), pages 292-301.
IEEE CS Press, september 1993.

Robert Arnold and Shawn Bohner. Software Change Impact
Analysis. IEEE Computer Society Press, 1998.

Douglas Neil Adams. Hitchhikers Guide to the Galary. Pan
Books, London, 1979.

Joao Araijo, Ana Moreira, Isabel Brito, and Awais Rashid.
Aspect-oriented requirements with UML. In Mohamed
Kandé, Omar Aldawud, Grady Booch, and Bill Harrison,
editors, Workshop on Aspect-Oriented Modeling with UML,
2002.

Peter A. Angeles. Harper Collins Philosophy Dictionary.
HarperCollins, New York, 1992.

Varol Akman and Mehmet Surav. Steps toward formalizing
context. AI Magazine, 17(3):55-72, 1996.

AspectJ. http://www.aspectj.org.

Thomas Baker. A grammar of dublin core. D-Lib Magazine,
6(10):47-60, october 2000.

Felix Biibl and Michael Balser. Tracing cross-cutting
requirements via context-based constraints. In Hongji
Yang, editor, 9" Conference on Software Maintenance and
Reengineering, Manchester, Great Britain. IEEE computer,
March 2005.

Felix Bachman, Len Bass, Charles Buhman, Santiago
Comella-Dorda, Fred Long, John Robert, Robert Seacord,
and Kurt Wallnau. Volume ii: Technical concepts of
component-based software engineering. Technical Report
CMU/SEI-2000-TR-008, Carnegie Mellon University, 2000.

Elisa Baniassad and Siobhan Clarke. Finding aspects in
requirements with theme/doc. In Early Aspects Workshop,
2004.

Ulrich Becker. D?AL - a design-based distribution aspect
language. Technical Report TR-14-98-07 of the Friedrich-
Alexander University Erlangen-Niirnberg, 1998.

Caroline Berthomieu. Matrix of propagation - a concept to
trace the impact of modifications on software components.
Technical Report of the Fraunhofer ISST, Germany, Novem-
ber 2002.

136

Bibliography

137

[BFG*93]

[BGJ99)

[Bil02]

[BKO5]

[BLO1]

[BL02]

[BRSY]

[Bre94]

[BS02]

[BSTSY]

[Biib00a]

[Biib0Ob]

[Biib02a]

Manfred Broy, Christian Facchi, Radu Grosu, Rudi Hettler,
Heinrich Hussmann, Dieter Nazareth, Oscar Slotosch, Franz
Regensburger, and Ketil Stglen. The requirement and design
specification language SPECTRUM, an informal introduction
(version 1.0), part 1 & 2. Technical Report TUM-19312,
Technical University Munich, 1993.

Stefan Berner, Martin Glinz, and Stefan Joos. A clas-
sification of stereotypes for object-oriented modeling lan-
guages. In B.Rumpe and R.B.France, editors, 2nd Interna-
tional Conference on the Unified Modeling Language, Col-
orado, USA, volume 1723 of LNCS, pages 249-264. Springer,
1999.

Alexander Bilke. Erweiterbare Proxyarchitekturen fiir Kom-
ponenteninfrastrukturen. Diploma Thesis, Technical Uni-
versity Berlin, Germany, Research Group CIS, May 2002.

Daniel M. Berry and Erik Kamsties. The syntactically
dangerous all and plural in specifications. ITEEE Software,
22(1):55-57, January 2005.

Felix Biibl and Andreas Leicher. Desiging Distributed
Component-Based Systems With DCL. In 7t IEEE Intern.
Conference on Engineering of Compler Computer Systems
ICECCS, Skovde, Sweden, pages 144-154. IEEE Computer
Soc. Press, June 2001.

Felix Biibl and Andreas Leicher. Uberwachung von An-
forderungen an Komponenten. OBJEK Tspektrum, 4:67-72,
July/August 2002.

Barry W. Boehm and Rony Ross. Theory w software project
management: Principles and examples. IEEE Transactions
on Software Engineering, 15(7):902-916, 1989.

Francis Bretherton. Reference model for metadata: A straw-
man. DRAFT 3/2/94, University of Wisconsin, 1994.

Paolo Bouquet and Luciano Serafini. Comparing formal the-
ories of context in AI. Technical Report IRST 0201-02, Is-
tituto Trentino di Cultura, January 2002.

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanen-
baum. Programming languages for distributed computing
systems. ACM Computing Surveys, 21(3):261-322, 1989.

Felix Biibl. Context properties for the flexible grouping
of model elements. In Hans-Joachim Klein, editor, 12. GI
Workshop ‘Grundlagen von Datenbanken’, Technical Report
Nr. 2005, pages 16—20. Christian-Albrechts-Universitat Kiel,
June 2000.

Felix Biibl. Towards desiging distributed systems with
ConDIL. In Wolfgang Emmerich and Stefan Tai, editors,
Engineering Distributed Objects (EDO 2000), volume 1999
of LNCS, pages 61-79, Berlin, November 2000. Springer.

Felix Biibl. The context-based constraint language CCL for
components. Technical Report 2002-20, Technical Univer-
sity Berlin, Germany, October 2002.

http://cis.cs.tu-berlin.de/~fbuebl/publications/DCL_for_components/DCL_for_components.pdf
http://cis.cs.tu-berlin.de/~fbuebl/publications/DCL_for_components/DCL_for_components.pdf

Bibliography

138

[Biib02b]

[Biib03)]

[Biib05)

[Bus02]

[BvHH*04]

[CDO0]

[CGHY2]

[CHIK02]

[CKISS)

[CKM™*99a]

[CKM*99b)]

[Cla02]

[CNYMOO]

Felix Biibl. Introducing context-based constraints. In Her-
bert Weber and Ralf-Detlef Kutsche, editors, Fundamental
Approaches to Software Engineering (FASE ’02), Grenoble,
France, volume 2306 of LNCS, pages 249-263, Berlin, April
2002. Springer.

Felix Biibl. What must (not) be available where? In Robert
Meersman, Zahir Tari, and Douglas C. Schmidt, editors, 5!
International Symposium on Distributed Objects and Ap-
plications (DOA), Catania, Sicily (Italy), volume 2888 of
LNCS. Springer, November 2003.

Felix Biibl. Never mind the source code, but be aware of
the context when dealing with cross-cutting requirements.
In Early Aspects Workshop, October 2005.

Susanne Busse. Modellkorrespondenzen fiir die kontinuier-
liche Entwicklung mediatorbasierter Informationssysteme.
PhD Thesis, Technical University Berlin, Germany, Logos
Verlag, 2002.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Hor-
rocks, Deborah L. McGuinness, Peter F. Patel-Schneider,
and Lynn Andrea Stein. Owl web ontology language refer-
ence. Technical report, W3C, Feb 2004.

John Cheesman and John Daniels. UML Components.
Addison-Wesley, 2000.

Stefan Conrad, Martin Gogolla, and Rudolf Herzig. Troll
light: A core language for specifying objects. Technical Re-
port Technical Report 92-06, Technical University Braun-
schweig, 1992.

Ivica Crnkovic, Brahim Hnich, Torsten Jonsson, and Zeynep
Kiziltan. Specification, implementation, and deployment of
components. Communications of the ACM, 45(10):35-40,
2002.

Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of
the software design process for large systems. Communica-
tions of the ACM, 31(11):1268-1287, 1988.

Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard
Rumpe, Jos Warmer, , and Alan Wills. The amsterdam
manifesto on OCL. Technical Report TUM-19925, Technis-
che Universitat Miinchen, 1999.

Steve Cook, Anneke Kleppe, Richard Mitchell, Jos Warmer,
and Alan Wills. Defining the context of OCL expressions. In
B.Rumpe and R.B.France, editors, 2nd International Con-
ference on the Unified Modeling Language, Colorado, USA,
volume 1723 of LNCS. Springer, 1999.

Siobhan Clarke. Extending standard uml with model com-
position semantics. Sci. Comput. Program., 44(1):71-100,
2002.

Lawrence Chung, Brian A. Nixon, Eric Yu, and John My-
lopoulos. Non-Functional Requirements in Software Engi-
neering. Kluwer Academic, Boston, 2000.

Bibliography

139

[CSN*+96]

[Dam02]

[Dav90]
[Devol]
[Dey01]
[Dij68]

[EMO90]

[FUS81]

[GFo4]

[GMTS]

[Har02]

[HDFOO]

[Hir00]

[1SO00]

[JAFO03]

H. C. Chen, B. Schatz, T. Ng, J. Martinez, A. Kirchhoff,
and C. T. Lin. A parallel computing approach to creating
engineering concept spaces for semantic retrieval - the illi-
nois digital library initiative project. Ieee Trans. On Pattern
Analysis And Machine Intelligence, 18:771-782, 1996.

Nicodemos Damianou. A policy framework for management
of distributed systems. PhD Thesis, Imperial College, Lon-
don, UK, 2002.

Alan M. Davis. Software Requirements: Analysis and Spec-
ification. Prentice Hall, Englewood, Cliffs, NK,, 1990.

Keith Devlin. Logic and Information. Cambridge University
Press, New York, 1991.

Anind K. Dey. Understanding and using context. Personal
and Ubiquitous Computing Journal, 5(1):4-7, 2001.

Edsger W. Dijkstra. Go to statement considered harmful.
Communications of the ACM, 11(3):147-148, March 1968.

Hartmut Ehrig and Bernd Mahr. Fundamentals of Alge-
braic Specification 2, volume 21 of FATCS Monographs on
Theoretical Computer Science. Springer, Berlin, 1990.

Roger Fischer and William Ury, editors. Getting to Yes:
Negotiation Agreement Without Giving In. Penguin Books,
New York, 1981.

Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An anal-
ysis of the requirements traceability problem. In Proceedings
of the First International Conference on Requirements En-
gineering (ICRE °9/4), Colorado Springs, Colorado, U.S.A.,
pages 94-101. IEEE Computer Society Press, April 1994.

S.J. Greenspan and C.L. McGowan. Structuring software
development for reliability. Microelectronics and Reliability,
17:75-84, January 1978.

Christoph Hartwich. Flexible distributed process topologies
for enterprise applications. In Proc. of the 3rd Intl. Work-
shop on Software Engineering and Middleware (SEM 2002,
Orlando, Florida, May 2002.

Heinrich Hussmann, Birgit Demuth, and Frank Finger.
Modular architecture for a toolset supporting OCL. In Andy
Evans, Stuart Kent, and Bran Selic, editors, UML 2000 -
The Unified Modeling Language. Advancing the Standard.
Third International Conference, York, UK, October 2000,
Proceedings, volume 1939 of LNCS, pages 278-293. Springer,
2000.

Graeme Hirst. Context as a spurious concept. In Proceedings
of the third workshop on Conference on Intelligent Process-
ing and Computational Linguistics, Rio de Janeiro, Mexico
Clity, pages 273287, 2000.

ISO/IEC. Information technology - software product quality
-part 1: Quality model. FDIS 9126-1, 2000.

Christopher B. Jones, Alia I. Abdelmoty, and Gaihua
Fu. Maintaining ontologies for geographical information

Bibliography

140

[KLM*+97]

[KM97]

[KMM*97]

[KROA]

[KS96

[KS98]

[Lad05)

[LB02]

[LBBK03]

[Len03]

[MB99)]

retrieval on the web. In Robert Meersman, Zahir Tari,
and Douglas C. Schmidt, editors, International Conference
on Ontologies, Databases, and Application of Semantics
(ODBASE), Catania, Sicily (Italy), volume 2888 of LNCS.
Springer, November 2003.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, European Conference
on Object-Oriented Programming ECOOP, volume 1241 of
LNCS, pages 220-242, Berlin, 1997. Springer.

Jeff Kramer and Jeff Magee. Exposing the skeleton in the
coordination closet. In Coordination 97, Berlin, pages 18—
31, 1997.

Joseph A. Konstan, Bradley N. Miller, David Maltz,
Jonathan L. Herlocker, Lee R. Gordon, and John Riedl.
GroupLens: applying collaborative filtering to usenet news.
Communications of the ACM, 40(3):77-87, 1997.

Shmuel Katz and Awais Rashid. From aspectual require-
ments to proof obligations for aspect-oriented systems.
In International Conference on Requirements Engineering
(RE), Kayoto, Japan, pages 48-57. IEEE Computer Soci-
ety, 2004.

Vipul Kashyap and Amit P. Sheth. Schematic and semantic
similarities between database objects: A context-based ap-
proach. Very Large Data Bases (VLDB) Journal, 5(4):276—
304, 1996.

Gerald Kotonya and Ian Sommerville. Requirements Engi-
neering: Process and Techniques. John Wiley & Sons, 1998.

Ramnivas Laddad. AOP at work: AOP and metadata: A
perfect match, part 1. Technical report, Developer Works,
2005.

Andreas Leicher and Felix Biibl. External requirements val-
idation for component-based systems. In A. B. Pidduck,
J. Mylopoulos, C. C. Woo, and M. T. Ozsu, editors, 14"
Conference on Advanced Information Systems Engineering
(CAiSE ’02), Toronto, Canada, volume LNCS 2348, pages
404 — 419, Berlin, May 2002. Springer.

Andreas Leicher, Alexander Bilke, Felix Bubl, and E. Ul-
rich Kriegel. Integrating container services with pluggable
system extensions. In Robert Meersman, Zahir Tari, and
Douglas C. Schmidt, editors, 5* International Symposium
on Distributed Objects and Applications (DOA), Catania,
Sicily (Italy), volume 2888 of LNCS. Springer, November
2003.

Camara Lenuseni. Design Critics fr Modelle komponenten-
basierter Systeme. Diploma Thesis, Technical University
Berlin, Germany, June 2003.

Mathew L. Staples Millivision and James M. Bieman. 3-d

Bibliography

141

[McC87]

[McT93]

[MDOO]

[MESWOL]

[Mey88]

[MRW77]

[Mun97]

[NEOO]

[NEFO1]

[NM03]

[0EE90]

[OMGY9]

[OMGO03a]
[OMG03b)

visualization of software structure. In M. Zelkovitz, editor,
Advances in Computers. Academic Press, London, 1999.

John McCarthy. Generality in artificial intelligence. Com-
munications of the ACM, 30(12):1030-1035, 1987.

M. F. McTear. User modelling for adaptive computer sys-
tems: A survey of recent developments. AI Review, 7:157—
184, 1993.

Tom Mens and Theo D’Hondt. Automating support for soft-
ware evolution in UML. Automated Software Engineering,
7(1):39-59, 2000.

Bob Moore, Ed Ellesson, John Strassner, and Andrea Wes-
terinen. Policy core information model - version 1 specifi-
cation (rfc 3060). Technical report, The Internet Society,
2001.

Bertrand Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1988.

J. A. McCall, P.K. Richards, and Gene F. Walters. Factors
in software quality. Technical Report RADC-TR-77-369,
Rome Air Development Center, November 1977.

Alberto Munoz. Compound key word generation from doc-
ument databases using a hierarchical clustering art model.
Intelligent Data Analysis, 1(1), 1997.

Bashar Nuseibeh and Steve Easterbrook. Requirements en-
gineering: A roadmap. In Proc. of International Conference
on Software Engineering (ICSE), Limerick, Ireland. ACM
Press, June 2000.

Christian Nentwich, Wolfgang Emmerich, and Anthony
Finkelstein. Static consistency checking for distributed spec-
ifications. In International Conference on Automated Soft-
ware Engineering (ASE), Coronado Bay, CA, 2001.

Gabor Nagypal and Boris Motik. A fuzzy model for rep-
resenting uncertain, subjective and vague temporal knowl-
edge in ontologies. In Robert Meersman, Zahir Tari,
and Douglas C. Schmidt, editors, International Conference
on Ontologies, Databases, and Application of Semantics
(ODBASE), Catania, Sicily (Italy), volume 2888 of LNCS.
Springer, November 2003.

Industry of Electrical and Electronics Engineers. Ieee stan-
dard glossary of software engineering terminology. IEEE
Std.610.12-1990, The Institute of Electrical and Electronic
Engineers, New York, 1990.

OMG. UML specification v1.3. OMG-Document ad/99-06-
08, 1999.

OMG. UML 1.5, formal/03-03-01, March 2003.

OMG. UML 2.0 infrastructure specification, ptc/03-09-15,
September 2003.

Bibliography

142

[Pal00]

[Pal02]

[Par94]

[Pic00]

[Pin00]

[QV94]

[Rat04]

[RE96]

[RGOO]

[RJO1]

[RR9S]

[RR99]

[Rum9g|

[RV97]

[SdVo1]

James D. Palmer. Traceability. In Richard H. Thayer and
Merlin Dorfman, editors, Software Requirements Engineer-
ing, pages 412-422. IEEE Computer Society, 2000.

Joanna Palac. Component specification. Technical Report
02-09, School of Information Technology, 2002.

D. L. Parnas. Software aging. In In Proc. of the 16th In-
ternational Conference on Software Engineering (ICSM’94),
Sorrento, Italy, 1994.

Joseph P. Pickett, editor. The American Heritage Dictio-
nary of the English Language. Boston: Houghton Mifflin
Company, 2000.

Francisco A. C. Pinheiro. Formal and informal aspects of
requirements tracing. In Proceedings of the third workshop
on Requirements Engineering, Rio de Janeiro, Brazil, 2000.

J.-P. Queille and J.-F. Voidrot. The impact analysis task
in software maintenance: A model and a case study. In
International Conference on Software Maintenance (ICSM
’94), Victoria, B.C., pages 234-242, september 1994.

Frank Ratzlow. Einsatzmoeglichkeiten der Aspekt-
orientierten Programmierung im Kontext der Java 2 En-
terprise Architektur. Diploma Thesis, FHTW Berlin, Ger-
many, Prof. Ingo Classen, 2004.

Matthias Radestock and Susan Eisenbach. Semantics of
a higher-order coordination language. In Coordination 96,
1996.

Mark Richters and Martin Gogolla. Validating UML Mod-
els and OCL Constraints. In Andy Evans and Stuart
Kent, editors, Proc. 8rd Int. Conf. Unified Modeling Lan-
guage (UML’2000). Springer, Berlin, LNCS, 2000.

Balasubramaniam Ramesh and Matthias Jarke. Toward ref-
erence models of requirements traceability. Transactions on
Software Engineering, 27(1):58-93, 2001.

Jason E. Robbins and David F. Redmiles. Software archi-
tecture critics in the argo design environment. Knowledge-
Based Systems. Special issue: The Best of IUI’98, 5(1):47—
60, 1998.

Suzanne Robertson and James Robertson. Mastering the
Requirements Process. Addison-Wesley, 1999.

Bernhard Rumpe. A note on semantics (with an empha-
sis on uml), proc. of second ECOOP workshop on precise
behavioral semantics. Technical Report Technical Report
TUM-19813, Technical University Munich, June 1998.

Paul Resnik and Hal R. Varian. Recommender systems.
Communications of the ACM, 40(3):56-58, 1997.

Pierangela Samarati and Sabrina De Capitani di Vimercati.
Access control: Policies, models, and mechanisms. In Ric-
cardo Focardi and Roberto Gorrieri, editors, Foundations
of Security Analysis and Design, Tutorial Lectures [revised

Bibliography

143

[SG89]

[SG95]
[SHU04]

[SK92]

[Ski01]

[SKKO1]

[S1094]

[SLXO01]

[Som92]

[SPY6]

[SP02]

[Spiss]

[SSR92]

[SSR4]

versions of lectures given during the IFIP WG 1.7 Inter-
national School on Foundations of Security Analysis and
Design, FOSAD 2000, Bertinoro, Italy, September 2000],
volume 2171 of Lecture Notes in Computer Science, pages
137-196. Springer, 2001.

Amit P. Sheth and Sunit K. Gala. Attribute relation-
ships: An impediment in automating schema integration.
In Proc. of the Workshop on Heterogeneous Database Sys-
tems (Chicago, Ill., USA), December 1989.

Standish-Group. The chaos report, 1995.

Dominik Stein, Stefan Hanenberg, and Rainer Unland.
Modeling pointcuts. In Workshop on Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture De-
sign, 2004.

Irene Stadnyk and Robert Kass. Modeling users’ interests in
information filters. Communications of the ACM, 35(12):49—
50, 1992.

Martin Skinner. Enhancing a UML editor by context-based
constraints for components. Diploma Thesis, Technical Uni-
versity Berlin, Germany, October 2001.

Ingo Schwab, Alfred Kobsa, and Ivan Koychev. Learning
user interests through positive examples using content anal-
ysis and collaborative filtering. draft from Fraunhofer Insti-
tute for Applied Information Technology, Germany, 2001.

Morris S. Sloman. Policy driven management for distributed
systems. Journal of Network and Systems Management,

2(4):333-360, 1994.

Gary N. Stone, Bert Lundy, and Geoffrey Xie. Network
policy languages: A survey and a new approach. I[EEFE
Network, 15(1):10-21, January 2001.

Tan Sommerville. Software Engineering. Addison-Wesley,
1992.

Clemens Szyperski and Cuno Pfister. Component-oriented
programming: Wcop’96 workshop report. Special issues
in object-oriented programming: Workshop reader of the
10th European Conference on Object-Oriented Programming
ECOOP’96, Linz, pages 127-130, 1996.

Wolfgang Schult and Andreas Polze. Aspect-oriented pro-
gramming with c# and .net. In Symposium on Object-
Oriented Real-Time Distributed Computing, pages 241-248,
2002.

J. Michael Spivey. Understanding Z. Cambridge University
Press, 1988.

Edward Sciore, Michael Siegel, and Arnon Rosenthal. Con-
text interchange using meta-attributes. In Proc. of the 1st
International Conference on Information and Knowledge
Management, pages 377-386, 1992.

Edward Sciore, Michael Siegel, and Arnon Rosenthal. Us-
ing semantic values to falilitate interoperability among het-

Bibliography

144

[STY4]

[Ste01]

[SvdH02]

[Szy97]

[TOHJ99]

[VAO3]

[vLO1]

[Wan02]

[WD93]

[WK99]

[Zav97)

[ZKS00]

erogeneous information systems. ACM Transactions on
Database Systems (TODS), 19(2):254-290, 1994.

Morris Sloman and Kevin P. Twidle. Domains: A framework
for structuring management policy. In Morris Sloman, edi-
tor, Chapter 16 in Network and Distributed Systems Man-
agement, pages 433-453, 1994.

Lukas Steiger. Recovering the evolution of object oriented
software systems using a flexible query engine. Diploma
Thesis, Philosophisch-naturwissenschaftlichen Fakultat der
Universitat Bern, Switzerland, October 2001.

Jeff Sutherland and Willem-Jan van den Heuvel. Enter-
prise application integration and complex adaptive systems.
Communications of the ACM, 45(10):59-64, 2002.

Clemens Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley, Reading, 1997.

Peri L. Tarr, Harold Ossher, William H. Harrison, and Stan-
ley M. Sutton Jr. Degrees of separation: Multi-dimensional
separation of concerns. In Int. Conference on Software En-
gineering (ICSE), pages 107-119, 1999.

Ute von Angern. Erweiterung des Open Source Tools
ArgoUML um Konzepte zum Entwurf verteilter Daten-
banken. Diploma Thesis, Technical University Berlin, Ger-
many, June 2003.

Axel van Lamsweerde. Goal-oriented requirements engi-
neering: A guided tour. In 5" IEEE International Sympo-
sium on Requirements Engineering, Toronto, pages 249-263.

ACM Press, August 2001.

Jianxin Wang. Prototypische Entwicklung eines Compilers
zur Umwandlung von Context-Based Constraints in ECA-
Regeln. Diploma Thesis, Technical University Berlin, Ger-
many, Research Group CIS, June 2002.

Jennifer Widom and Umeshwar Dayal. A Guide To Active
Databases. Morgan-Kaufmann, 1993.

Jos B. Warmer and Anneke G. Kleppe. Object Constraint
Language — Precise modeling with UML. Addison-Wesley,
Reading, 1999.

Pamela Zave. Classification of research efforts in require-
ments engineering. ACM Computing Surveys, 29(4):315-
321, 1997.

J. Leon Zhao, Akhil Kumar, and Edward A. Stohr.
A dynamic grouping technique for distributing codified-
knowledge in large organizations. In 10" Workshop on

Information Technology and Systems, Brisbane, Australia,
December 2000.

	Background
	Component-Based Software Engineering
	The Unified Modelling Language UML
	 Requirements Engineering
	 The Object Constraint Language OCL

	Outline of this Thesis
	Motivation: Adapting Complex Systems to New Requirements
	The Running Example: A Privacy Policy
	Objectives
	 Structure of this Thesis

	 Context-Based Constraints (CoCons)
	 Overview
	 Introducing Context Properties
	 What is Context?
	 Context Properties: Formatted Metadata Describing Elements
	 Context Property Examples
	 Formal Definition of Context Properties
	Useful Context Property (Stereo-)Types
	Research Related To Context Properties

	 Introducing Context-Based Constraints (CoCons)
	 Intuitive Definition of Context-Based Constraints
	 The Common CoCon Syntax
	 The Context Property Query Language CPQL
	Navigation via Dot-Path-Notation
	Two-Step Approach for Defining CoCon-Predicate Semantics
	 Formalization of Context-Based Constraints
	 Formalization of CPQL
	 Comparing Context-Based Constraints with Aspects
	 Research Related to Context-Based Constraints
	 The Fundamental Things Apply As Time Goes By

	Turning CoCons into CoCon-Rules by Adding Events And Actions
	 Introduction to Business Rules and Policies
	 Difference between CoCons and CoCon-Rules
	 Limitations of Enriching CoCons with Actions and Events
	 Referring to Events and Actions in CoCon-Rules
	 The Common CoCon-Rule Syntax

	Applying CoCons in Continuous Software Engineering
	 Continuous Requirements Tracing
	 Detect CoCon Violations
	 CoCon-Violation Conflicts
	 The Detect-CoCon-Violations Algorithm

	 Detect Contradicting CoCons
	 Inter-CoCon Conflicts
	 The Detect-Inter-CoCon-Conflicts Algorithms

	 Proof-of-Concept Tools
	Maintaining Context Property Values
	 Type-Instance Constraint On Context Property Values
	 Dependent Context Property Values
	 Belongs-To Relations Result in Derived Context Properties Values
	 Outlook: Applying Context Properties in Continuous Software Engineering

	 The Context-Based Constraint Language CCL
	 Overview on CCL
	 Access Permission CoCons
	 The Notion of Access Permission CoCons
	 Access Permission CoCon-predicates
	 Detectable Inter-CoCon Conflicts of Access Permission CoCons
	 Example for Using Access Permission CoCons
	Related Research on Access Control Policies

	 Communication CoCons
	 The Notion of Communication CoCons
	 The Communication CoCon-predicates
	 Detectable Inter-CoCon Conflicts of Communication CoCons
	 Examples for Using Communication CoCons
	Related Research on Communication CoCons

	 Distribution CoCons
	 The Notion of Distribution CoCons
	 Distribution CoCon-predicates
	 Detectable Inter-CoCon Conflicts of Distribution CoCons
	 Examples for Using Distribution CoCons
	Related Research on Distribution and Network Policies

	 Information-Need CoCons
	 The Notion of Information-Need CoCons
	 The Information-Need CoCon-predicates
	 Detectable Inter-CoCon Conflicts of Information-Need CoCons
	 Examples for Using Information-Need CoCons
	Related Research on Information-Need CoCons
	Information-Need CoCon-Rules

	 Inter-Value CoCons
	 The Notion of Inter-Value CoCons
	 The Inter-Value CoCon-predicates
	 Detectable Inter-CoCon Conflicts of Inter-Value CoCons
	 Examples for Using Inter-Value CoCons
	Related Research on Inter-Value CoCons

	UML-Specific Semantics of CCL
	 Integrating CoCons into UML
	The Easy Part: Using UML's Constraints and Tagged Values
	The Problem: UML Constraints Don't Consider Point Cuts

	 Comparing Context-Based Constraints with OCL
	UML Semantics of ACCESSIBLE TO CoCons
	 CoCons can be Verified Already at the Same Meta-Level
	 CoCons can Constrain Unassociated Elements

	 The CCL Analysis & Specification Method CCLM
	 Overview on CCLM
	Background: Adopting Kotonya's and Sommervilles's Requirements Engineering Process
	Introducing the 11 Activities during the CCLM Process
	Preamble: Why to Apply CCL at all?

	The Requirements Elicitation Phase of CCLM
	Rules-Driven or Context-Driven Requirements Elicitation
	 How to Write Down Informal CoCon-Rules
	 Rule-Driven CoCon Family Identification
	 Rule-Driven Elicitation of Relevant Informal CoCon-Rules
	 Rules-Driven Elicitation of Relevant Context Property Candidates
	 Context-Driven Elicitation of Relevant Context Properties
	 Context-Driven Elicitation of Relevant Informal CoCon-Rules
	 Context-Driven CoCon Family Identification

	 The Requirements Negotiation Phase of CCLM
	 The CCL Specification Phase of CCLM
	 Context Property Application
	 CCL Specification

	The CCL Validation Phase of CCLM

	Conclusion
	Summary
	Future Research Recommendations
	 Limitations of CoCons
	 Benefits of CoCons

	 The Textual Syntax of CCL
	Translating Accessability CoCons into OCL
	 Overview
	Artefact-Specific Semantics for UML
	The Privacy Policy in OCL

	Bibliography

