
Never mind the Source Code, but be aware of the Context when dealing with
Cross-Cutting Requirements

Felix Bübl
Epigenomics AG, Berlin, Germany

fbuebl@cocons.org

Abstract

One crosscutting requirement (also called aspect) affects
several parts of a software system. It is difficult to express
aspects during requirements analysis or at design level if we
don’t know all implementation details yet. For instance, it is
difficult to determine at which places (= join points) which
aspect must be added to (= weaved in) the system. In this
paper, we suggest to express aspects in a way that is under-
standable for stakeholders and customers. We achieve this
by using a new notion of weaving: We determine where to
weave in which aspect by considering the system’s context
– our pointcuts are context-based. We express aspects via
Context-Based Constraints (CoCons) independent of pro-
gramming or modelling languages.

1. Introduction

Before going into details, we start with a crosscutting re-
quirement example.

1.1. Privacy Policy Example

Let’s assume that the component-based software system
‘pet shop’ should comply with the following privacy policy:

All components handling personal data must
be inaccessible to all components used in the
workflow ‘Create XYZ Report’ because a XYZ
report must not contain personal data.

A software system consists of different artefact types,
like models, source code, or configuration files. Which el-
ements of which system artefact should be checked for
whether they do (or do not) access which other elements
in order to meet the privacy policy?

1.2. Goal: Identify Join Points without knowing
the Source Code

According to [12],aspect-oriented programming lan-
guagessupplement programming languages with crosscut-
ting concerns that are called aspects. The aspects are de-
veloped separately from the normal source code and are
weaved into the source code on compile time or even dy-
namically at runtime. A place where to weave in an aspect
is calledjoin point in AspectJ ([3]). Apointcut defines the
conditions under which to weave in an aspect – it defines a
query for selecting the join points.

Typically, a pointcut selects join points by referring to
source code details like names of classes or methods. But,
stakeholders who don’t know anything about the source
code should be able to understand and agree with cross-
cutting requirements. Hence, our goal is to define pointcuts
without knowing the source code at all. For example, we
want to determine where to control the privacy policy (see
section 1.1) without knowing any technical detail about the
system’s components.

1.3. Our Context-Based Approach in Brief

We specify crosscutting requirements via context-based
constraints (CoCons). They are formally defined in [7]. This
paper compares them with aspects. The basic notion of Co-
Cons can be explained in just a few sentences:

1. We annotate the system artefact elements with format-
ted metadata called ‘context properties’. As explained
in section 2.1, context is any information that can be
used to characterize the situation of an element.

2. A CoCon expresses a condition on how system ele-
ments must (or must not) relate to each other.

3. A CoCon selects its constrained elements via their con-
text properties – its pointcuts are determined by the
context of the constrained elements.

For instance, we could use context properties to mark
each element that handles personal data, and to mark each



element that is used in the ‘Create XYZ Report’ workflow.
Then, the privacy policy in section 1.1 can be expressed via
the CoConall elements that handle personal data must be
inaccessible to those elements that are used in the Create
XYZ Report workflow.

2. Introducing Context Properties

2.1. What is Context?

Each element resides in an infinite number of contexts –
according to [18, 10], it is impossible to list all contexts of
an element because we can’t completely define what an el-
ement denotes. All context definitions developed in com-
puter science fail to provide ageneral theory of context as
discussed in [9]. Only limited context models can be han-
dled. Thus, we stick to a simple and limited notion:

• Context that is not part of or managed by the system
can be taken into account.

• The context of a context is ignored here.

• The context of a element characterizes the situation(s)
in which the element resides as defined in [8].

2.2. Context Properties: Formatted Metadata De-
scribing Elements

We suggest expressing context as metadata using the
simple attribute-value syntax: Acontext property consists
of a name and a set of values. Some examples are provided:

• The values of the context property ‘Workflow’ reflect
the workflows in which the associated element is used.

• The values of the context property ‘Personal Data’ sig-
nal whether an element handles data of private nature.

• The values of the context property ‘Operational Area’
describe, in which department(s), module(s), or do-
main(s) the associated element is used. They provide
an organisational perspective.

Such context information is typically not part of a sys-
tem’s source code. Still, we need to store it somewhere if
we want to refer to it. In order to enrich a system with con-
text information, we don’t have to modify its source code or
its binary components. Instead, we can manage the context-
information in an external repository. Of course, the context
properties can also be managed in the source code. For in-
stance, the Java metadata facility, a part of J2SE 5.0, is a
significant recent addition to the Java language. It includes
a mechanism for adding custom annotations to your Java
code, as well as providing a programmatic access to meta-
data annotation through reflection.

3. Context-Based Constraints (CoCons) ex-
press Cross-Cutting Requirements

3.1. Intuitive Definition of Context-Based Con-
straints

A context-based constraint(CoCon) expresses a con-
dition on how its constrained elements must relate to each
other. This conditionC(x, y) is calledCoCon-predicate
here. In terms of AspectJ ([3]),C(x, y) expresses an advice.
Different CoCon-predicates exist. For example, a CoCon-
predicate can express that ‘x must (or must not) be acces-
sible toy’ (as in the security requirement in section 1.1).
Another CoCon-predicate can express that certain elements
must (or must not) be allocated to certain computers (dis-
tribution requirement). All in all, 22 CoCon-predicates for
component-based systems are defined in [6]. They address
concerns like ‘x must be logged when callingy’ which
are typically realized via aspect-oriented programming. Fu-
ture research hopefully will examine additional CoCon-
predicates. A CoCon could relate manysets of constrained
elements. We only discuss CoCons that relatetwo sets of
elements as expressed via the following predicate logic for-
mula:

∀x, y : TCC(x) ∧ SCC(y) → C(x, y)

The variablex holds all elements in the target set, and
the variabley hold all elements in the scope set. The pred-
icate C(x, y) on the right side of the formula is a called
CoCon-predicate because it defines the semantics of the
CoCon. For example,C(x, y) can representx MUST BE
ACCESSIBLE TO y, or it can representx MUST BE
LOGGED WHEN CALLING y. C(x, y) is a binary relation
– it expresses howx relates toy.

BesidesC(x, y), all the other predicates refer to a differ-
ent level: they definewhich x must relate towhich y. The
predicatesTCC(x) andSCC(y) define context conditions.
A context condition selects artefact elements according to
their context property values. Different query languages ex-
ist for expressing a context condition - the right choice de-
pends on in which format the metadata is stored. If the con-
text properties of each artefact element are stored in a rela-
tional schema then a relational query language, e.g. SQL,
can be used to express context conditions. If the context
properties are stored in a hierarchical XML schema then
a query language for XML documents can be used, e.g.
XQuery.

The Context-Based Constraint Language CCL has been
defined in [6]. The syntax of CCL is not explained here, be-
cause it resembles plain English and is easily understood.
For example, the privacy policy described in section 1.1 can
be expressed in CCL as follows:



ALL COMPONENTS WHERE ‘Personal Data’
CONTAINS ‘True’ MUST NOT BE ACCESSIBLE
TO ALL COMPONENTS WHERE ‘Workflow’
CONTAINS ‘Create XYZ Report’

3.2. Two-Step Approach for Defining CoCon-
Predicate Semantics

CoCons can be applied toartefact types at different de-
velopment levels, likerequirement specifications at analysis
level,UML models at design level,Java files at source code
level, orcomponent instances at runtime. We use a two-step
approach for defining semantics of a CoCon-predicate:

• The artefact-type-independent semantics of a
CoCon-predicate do not refer to specific properties of
an individual artefact type. It simply expresses the se-
mantics in plain English. For instance, ‘x must be
accessible toy’ is an artefact-type-independent se-
mantics forC(x, y).

• The artefact-type-specific semanticsof a CoCon-
predicate define how to check artefacts of a certain
type whether the artefact elementx relates to the arte-
fact elementy as demanded by the CoCon-predicate.

For example, how can we check a UML model if its ele-
ments comply with the CoCon-predicate ‘x must be acces-
sible toy’? The UML-specific semantics ofACCESSIBLE
TOCoCons consider a lot more details for each of the many
diagram types of UML.

3.3. Proof of Concept Tools

We have build proof-of concept tools for different arte-
fact types. The application of CoCons during modelling
component-based system via UML has been evaluated in a
case study being carried out in cooperation with the ISST
Fraunhofer Institute, the Technical University Berlin and
the insurance company Schwäbisch Hall. As a result, the
‘CCL plugin’ for the open source CASE tool ArgoUML
has prototypically been implemented and is available for
download atccl-plugin.berlios.de/ . It integrates
the verification of CoCons into the Design Critiques ([16])
mechanism of ArgoUML. It adds design critiques that iden-
tify which model elements violate which CoCon, and it adds
design critiques that identify which CoCons contradict each
other. Hence, it demonstrates how to verify UML models
for compliance with CoCons.

Two other prototypes enforce CoCons in enterprise Java
Beans (EJB) systems at runtime. The EJBcomplex frame-
work described in [14] uses dynamic proxies to intercept
communication between EJB components. For instance, it
can control which bean is allowed to invoke which other
bean according to the current context of the caller and the

callee. Instead of dynamic proxies as interception mecha-
nism, we could also use aspect-oriented programming as ex-
amined in [15]. JBoss AOP and AspectWerkz support meta-
data in their current versions. The upcoming version of As-
pectJ will support metadata by modifying the AspectJ lan-
guage. Furthermore, we could also use the pet shop’s filter
mechanism. Different artefact-specific semantics for Java
applications exist. But, the stakeholders who have to un-
derstand and agree to the crosscutting requirements typi-
cally don’t care for artefact-specific implementation details.
Using CoCons, they only have to understand the abstract,
artefact-independent semantics and the system’s context.

3.4. Comparing CoCons with Aspects at Source
Code Level

Even though CoCons can be implemented via aspect-
oriented frameworks, CoCons add the new notion of
context-based point cuts as explained next. The places
where to weave in an aspect are expressed in many dif-
ferent ways by current aspect-oriented languages. A few
examples are the join point mechanism of AspectJ, the hy-
perspace mechanism, or the composition filtering mech-
anism. Modeling a pointcut is basically about modeling
a selection query. The query defines a condition for se-
lecting join points. The currently most common way to
capture join points utilizes the implicit properties of pro-
gram elements, including static properties such as method
signature and lexical placement, as well as dynamic prop-
erties such as control flow. Typically, a pointcut query
quantifies over properties of the source code.

On the contrary, a CoCon defines its pointcuts via con-
text conditions. Such a context condition quantifies over
context properties in order to select the join points. The con-
text condition is a query that selects the join points where to
weave in the cross-cutting concernC(x, y). As explained
in section 2.1, the context doesn’t have to be part of the
source code or managed by the system. Likewise, [13] dis-
cusses that signature-based pointcuts cannot capture trans-
action management or authorization because there might be
nothing inherent in an element’s name or signature suggests
transactionality or authorization characteristics.

We suggest using context as glue between ad-
vices and joining points for two reasons. Contexts are
implementation-independent and may express theinten-
tion why to weave in an advice better than normal pointcuts
referring to source code properties. For instance, a busi-
ness expert probably can tell whether an advice must
affect all system element in the context ‘sales depart-
ment’ or all elements in the context ‘purchase workflow’,
but this expert will hardly know which regular expres-
sion a methods or components should match in order to
be affected. Moreover, we can identify and refer to con-

http://ccl-plugin.berlios.de/


texts even before the first line of source code has been writ-
ten down. For instance, stakeholders can understand and
negotiate the privacy policy of section 1.1 without know-
ing which components actually exist already or will exist.
As soon as some source code or binary is added to the sys-
tem that matches a CoCon’s context condition, it will be
affected by the CoCon.

In [13], several mechanisms are examined for referring
to metadata in pointcuts. In [17], aspects are expressed as
C# custom attributes. The aspects are weaved in using intro-
spection and reflection techniquebased on metadata in the
.NET common language runtime. Hence, recent research
examines context-based aspects. CoCons add two sugges-
tions: we can express our context-based aspect in an ab-
stract textual language that does not refer to the source code
level at all. Furthermore, we can manage the metadata out-
side of the system/source code in an external repository. We
used external repositories in [14, 15] because we wanted our
frameworks to work without modifying the components.

3.5. Comparing CoCons with Aspects at Design
Level

With regards to considering aspects already during de-
sign, several interesting approaches exist. In [2], cross-
cutting concerns are also expressed at a high abstraction
level during design. But, in this approach the pointcuts are
defined by listing the involved UML models. Instead, a Co-
Con indirectly selects its constrained elements according to
their context properties.

A graphical way to model join points called ‘Join Point
Designation Diagram’(JPDD) is introduced in [19]. JPDDs
describe ‘selection patterns’ which specify all properties
a model element (i.e., UML Classifier or UML Message)
must provide in order to represent a join point. The seman-
tic of JPDDs is specified by means of OCL Expressions.
JPDD could be used to model CoCons if the context proper-
ties are expressed as tagged values for each model element.
But still, the JPDD approach demands to change the UML
metamodel each time when a pointcut condition is changed
or added. Furthermore, the JPDD community doesn’t con-
sider context in pointcuts yet.

3.6. Comparing CoCons with Early Aspects at
Requirements Level

Aspects already exist in requirements and architecture
artefacts. According to [1], an early aspect is a crosscut-
ting requirement because it recurs in several stakeholders’
or viewpoints’ requirement specifications. But, even if one
requirement is mentioned in multiple requirement specifi-
cations, it won’t necessarily be implemented in different
classes. Furthermore, a requirement which is only men-

tioned once in the requirement specification documents can
still become a crosscutting concern when implementing the
system. CoCons differ from the common notion of early as-
pects, because a CoCons does not need to be mentioned in
several places in order to express a cross-cutting require-
ment. Instead, it expresses an aspect at one place. Its con-
text conditions help to trace this aspect to the other system
artefacts at design, source code or runtime level because the
context conditions will select the constrained elements in
each artefact.

According to [5], we should avoid the word ‘all’ when
stating a requirement because it is an example of a hard to
interpret requirement. This may be right, but its also is an
interesting requirement because it may become a crosscut-
ting requirement. A CoCon use the word ‘all’ to express that
there may be more than one join point for this requirement,
and it describes its involved system elements indirectly via
their context. By using dangerous ‘all’ statements, we can
write down the crosscutting concern at one place in the re-
quirement specification and, thus, avoid redundancy which
may impede us in evolving our system.

The Theme approach described in [4] identifies early as-
pects via linguistic analysis of requirement documents and
expresses these early aspects via UML. For each aspect, a
list of all join points is compiled. On the contrary, CoCons
don’t list their constrained elements. Instead, CoCons indi-
rectly describe their join points via their context.

The PROBE framework described in [11] defines which
aspect crosscuts which requirement by writing down com-
position rules. Again, these rules list all affected require-
ments. On the contrary, a CoCon doesn’t list each con-
strained element.

4. Conclusion

4.1. Limitations of CoCons

Taking only the metadata of an element into account
bears some risks. It must be ensured that the context prop-
erty values are always up-to-date. If the metadata is ex-
tracted newly each time when checked and if the extrac-
tion mechanism works correctly then the metadata is cor-
rect and up-to-date. Moreover, the extraction mechanism
ensures that metadata is available at all.

Within one system, only one terminology for context
property values should be used. For instance, the workflow
‘Add New Customer’ should have exactly this name (and
semantics) in every part of the system, even if different
companies manufacture or use its parts. Otherwise, string
matching gets complex when checking a context condition.



4.2. Benefits of CoCons

Context properties assist in handling sets of elements that
share a context even across different element types, artefact
types, or platforms. They also help to express requirements
relating to several elements that are not associated with each
other or even belong to different artefacts.

The same CoCon used to check the system model can
also be used to check other system artefact for violated
or contradicting requirements because CoCons specify re-
quirements at an artefact-type-independent, abstract level.
Therefore, they enable us to validate different software de-
velopment artefacts for compliance with the same CoCon
during modelling, during deployment and at runtime.

The requirements specification should serve as a doc-
ument understood by designers, programmers, and cus-
tomers. CoCons can be specified in easily comprehensible,
straightforward language that assists every English speak-
ing person in understanding their design rationale. A Co-
Con can be translated into an artefact-specific advice that
is more complex than the corresponding CoCon because it
refers to all the artefact-specific details. The effort of writ-
ing down a requirement in the minutest details is unsuitable
if the details are not important. CoCons facilitate staying on
an abstract level that eases requirements specification.

The people who need a requirement to be enforced do
often neither know all the details of every part of the sys-
tem (glass box view) nor do they have access to the com-
plete source code, model or configuration files. It can be
unknown which elements are involved in the requirement
when we specify it via CoCons. Software tools that check
the system artefacts for violated or contradicting CoCons
will identify those elements that are involved in the require-
ment automatically. CoCons help us to specify requirements
because it is easier to write down a requirement if we don’t
have to list all of the elements that relate to this require-
ment. By using CoCons, we don’t have to understand every
detail of the system. Instead, we only need to understand
the context property values we use for describing the con-
text of the system elements.

References

[1] J. Araújo, E. Baniassad, P. Clements, A. Moreira, A. Rashid,
and B. Tekinerdŏgan. Early aspects: The current landscape.
Technical Report COMP-001-2005, Lancaster University,
February 2005.

[2] J. Araújo, A. Moreira, I. Brito, and A. Rashid. Aspect-
oriented requirements with UML. In M. Kandé, O. Aldawud,
G. Booch, and B. Harrison, editors,Workshop on Aspect-
Oriented Modeling with UML, 2002.

[3] AspectJ. http://www.aspectj.org.
[4] E. Baniassad and S. Clarke. Finding aspects in requirements

with theme/doc. InEarly Aspects Workshop, 2004.

[5] D. M. Berry and E. Kamsties. The syntactically dangerous
all and plural in specifications.IEEE Software, 22(1):55–57,
January 2005.

[6] F. Bübl. The context-based constraint language CCL for
components. Technical Report 2002-20, Technical Univer-
sity Berlin, Germany, October 2002.

[7] F. Bübl and M. Balser. Tracing cross-cutting requirements
via context-based constraints. In H. Yang, editor,9th Confer-
ence on Software Maintenance and Reengineering, Manch-
ester, Great Britain. IEEE computer, March 2005.

[8] A. K. Dey. Understanding and using context.Personal and
Ubiquitous Computing Journal, 5(1):4–7, 2001.

[9] G. Hirst. Context as a spurious concept. InProceedings of
the third workshop on Conference on Intelligent Processing
and Computational Linguistics, Rio de Janeiro, Mexico City,
pages 273–287, 2000.

[10] V. Kashyap and A. P. Sheth. Schematic and semantic
similarities between database objects: A context-based ap-
proach.Very Large Data Bases (VLDB) Journal, 5(4):276–
304, 1996.

[11] S. Katz and A. Rashid. From aspectual requirements to
proof obligations for aspect-oriented systems. InInterna-
tional Conference on Requirements Engineering (RE), Kay-
oto, Japan, pages 48–57. IEEE Computer Society, 2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Aksit and S. Matsuoka, editors,European
Conference on Object-Oriented Programming ECOOP, vol-
ume 1241 ofLNCS, pages 220–242, Berlin, 1997. Springer.

[13] R. Laddad. AOP at work: AOP and metadata: A perfect
match, part 1. Technical report, DeveloperWorks, 2005.

[14] A. Leicher, A. Bilke, F. B̈ubl, and E. U. Kriegel. Integrat-
ing container services with pluggable system extensions. In
R. Meersman, Z. Tari, and D. C. Schmidt, editors,5th In-
ternational Symposium on Distributed Objects and Applica-
tions (DOA), Catania, Sicily (Italy), volume 2888 ofLNCS.
Springer, November 2003.

[15] F. Ratzlow. Einsatzmoeglichkeiten der Aspekt-orientierten
Programmierung im Kontext der Java 2 Enterprise Architek-
tur. Diploma Thesis, FHTW Berlin, Germany, Prof. Ingo
Classen, 2004.

[16] J. E. Robbins and D. F. Redmiles. Software architecture crit-
ics in the argo design environment.Knowledge-Based Sys-
tems. Special issue: The Best of IUI’98, 5(1):47–60, 1998.

[17] W. Schult and A. Polze. Aspect-oriented programming with
c# and .net. InSymposium on Object-Oriented Real-Time
Distributed Computing, pages 241–248, 2002.

[18] A. P. Sheth and S. K. Gala. Attribute relationships: An im-
pediment in automating schema integration. InProc. of the
Workshop on Heterogeneous Database Systems (Chicago,
Ill., USA), December 1989.

[19] D. Stein, S. Hanenberg, and R. Unland. Modeling point-
cuts. InWorkshop on Early Aspects: Aspect-Oriented Re-
quirements Engineering and Architecture Design, 2004.


	Introduction
	Privacy Policy Example 
	 Goal: Identify Join Points without knowing the Source Code 
	 Our Context-Based Approach in Brief

	 Introducing Context Properties 
	 What is Context?
	 Context Properties: Formatted Metadata Describing Elements 

	 Context-Based Constraints (CoCons) express Cross-Cutting Requirements 
	 Intuitive Definition of Context-Based Constraints 
	 Two-Step Approach for Defining CoCon-Predicate Semantics
	 Proof of Concept Tools 
	 Comparing CoCons with Aspects at Source Code Level 
	 Comparing CoCons with Aspects at Design Level 
	 Comparing CoCons with Early Aspects at Requirements Level 

	Conclusion
	 Limitations of CoCons 
	 Benefits of CoCons 


